ترغب بنشر مسار تعليمي؟ اضغط هنا

AGES: The AGN and Galaxy Evolution Survey

146   0   0.0 ( 0 )
 نشر من قبل Christopher S. Kochanek
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.S. Kochanek




اسأل ChatGPT حول البحث

The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 square degrees of the Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). The final sample consists of 23745 redshifts. There are well-defined galaxy samples in ten bands (the Bw, R, I, J, K, IRAC 3.6, 4.5, 5.8 and 8.0 micron and MIPS 24 micron bands) to a limiting magnitude of I<20 mag for spectroscopy. For these galaxies, we obtained 18163 redshifts from a sample of 35200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all ten photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085<z<0.66. AGN were selected as radio, X-ray, IRAC mid-IR and MIPS 24 micron sources to fainter limiting magnitudes (I<22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119 and 13 above redshifts of 0.5, 1, 2, 3 and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs, spectra, and spectral energy distribution decompositions. The photometric redshift estimates are for all sources in the AGES samples.

قيم البحث

اقرأ أيضاً

350 - X. Dai 2009
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-de fined IRAC samples contain 3800-5800 galaxies for the 3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained relatively complete luminosity functions in the local redshift bin of z < 0.2 for all four IRAC channels that are well fit by Schechter functions. We found significant evolution in the luminosity functions for all four IRAC channels that can be fit as an evolution in M* with redshift, Delta M* = Qz. While we measured Q=1.2pm0.4 and 1.1pm0.4 in the 3.6 and 4.5 micron bands consistent with the predictions from a passively evolving population, we obtained Q=1.8pm1.1 in the 8.0 micron band consistent with other evolving star formation rate estimates. We compared our LFs with the predictions of semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5 micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron. These models also predicted a comparable Q value to our luminosity functions at 8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also measured the luminosity functions separately for early and late-type galaxies. While the luminosity functions of late-type galaxies resemble those for the total population, the luminosity functions of early-type galaxies in the 3.6 and 4.5 micron bands indicate deviations from the passive evolution model, especially from the measured flat luminosity density evolution. Combining our estimates with other measurements in the literature, we found (53pm18)% of the present stellar mass of early-type galaxies has been assembled at z=0.7.
134 - Xinyu Dai 2015
The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift XRT serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4e-15 erg/s/cm^2) and area survey filling the gap between deep, narrow Chandra/XMM-N ewton surveys and wide, shallow ROSAT surveys. Here we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wise mid-infrared (MIR) colors to classify the sources. For AGN we can roughly separate the point sources into MIR-red and MIR-blue AGN, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher redshift (z > 0.5) X-ray-selected clusters.
Aimed at understanding the evolution of galaxies in clusters, the GLACE survey is mapping a set of optical lines ([OII]3727, [OIII]5007, Hbeta and Halpha/[NII] when possible) in several galaxy clusters at redshift around 0.40, 0.63 and 0.86, using th e Tuneable Filters (TF) of the OSIRIS instrument (Cepa et al. 2005) at the 10.4m GTC telescope. This study will address key questions about the physical processes acting upon the infalling galaxies during the course of hierarchical growth of clusters. GLACE is already ongoing: we present some preliminary results on our observations of the galaxy cluster Cl0024+1654 at z = 0.395; on the other hand, [email protected] has been approved as ESO/GTC large project to be started in 2011.
We explore the connections between the evolving galaxy and AGN populations. We present a simple phenomenological model that links the evolving galaxy mass function and the evolving quasar luminosity function, which makes specific and testable predict ions for the distribution of host galaxy masses for AGN of different luminosities. We show that the $phi^{*}$ normalisations of the galaxy mass function and of the AGN luminosity function closely track each other over a wide range of redshifts, implying a constant duty cycle of AGN activity. The strong redshift evolution in the AGN $L^*$ can be produced by either an evolution in the distribution of Eddington ratios, or in the $m_{bh}/m_{*}$ mass ratio, or both. To try to break this degeneracy we look at the distribution of AGN in the SDSS ($m_{bh},L$) plane, showing that an evolving ratio $m_{bh}/m_{*} propto (1+z)^2$ reproduces the observed data and also reproduces the local relations which connect the black hole population with the host galaxies for both quenched and star-forming populations. We stress that observational studies that compare the masses of black holes in active galaxies at high redshift with those in quiescent galaxies locally will always see much weaker evolution. Evolution of this form would produce, or could be produced by, a redshift-independent $m_{bh} - sigma$ relation and could explain why the local $m_{bh} - sigma$ relation is tighter than $m_{bh} - m_{*}$ even if $sigma$ is not directly linked to black hole growth. Irrespective of the evolution of $m_{bh}/m_{*}$, the model reproduces both the appearance of downsizing and the so-called sub-Eddington boundary without any mass-dependence in the evolution of black hole growth rates.
In order to relate the observed evolution of the galaxy stellar mass function and the luminosity function of active galactic nuclei (AGN), we explore a co-evolution scenario in which AGN are associated only with the very last phases of the star-formi ng life of a galaxy. We derive analytically the connections between the parameters of the observed quasar luminosity functions and galaxy mass functions. The $(m_{rm bh}/m_{*})_{Qing}$ associated with quenching is given by the ratio of the global black hole accretion rate density (BHARD) and star-formation rate density (SFRD) at the epoch in question. Observational data on the SFRD and BHARD suggests $(m_{rm bh}/m_{*})_{Qing} propto (1+z)^{1.5}$ below redshift 2. This evolution reproduces the observed mass-luminosity plane of SDSS quasars, and also reproduces the local $m_{rm bh}/m_{*}$ relation in passive galaxies. The characteristic Eddington ratio, $lambda^*$, is derived from both the BHARD/SFRD ratio and the evolving $L^*$ of the AGN population. This increases up to $z sim 2$ as $lambda^* propto (1+z)^{2.5}$ but at higher redshifts, $lambda^*$ stabilizes at the physically interesting Eddington limit, $lambda^* sim 1$. The new model may be thought of as an opposite extreme to our earlier co-evolution scenario in Caplar et al. 2015. The main observable difference between the two co-evolution scenarios, presented here and in Caplar et al. 2015, is in the active fraction of low mass star-forming galaxies. We compare the predictions with the data from deep multi-wavelength surveys and find that the quenching scenario developed in the current paper is much to be preferred.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا