ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of the VERITAS Upgrade

117   0   0.0 ( 0 )
 نشر من قبل D. B. Kieda
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. B. Kieda




اسأل ChatGPT حول البحث

The VERITAS gamma ray observatory (Amado, AZ, veritas.sao.arizona.edu) uses the Imaging Atmospheric Cherenkov Technique (IACT) to study sources of Very High Energy (VHE: E > 100 GeV) gamma rays. Key science results from the first three years of observation include the discovery of the first VHE emitting starburst galaxy, detection of new Active Galactic Nuclei (AGN), SuperNova Remnants (SNR), gamma ray binaries as well as strong limits on the emission of VHE gamma rays from dark matter annihilation in dwarf galaxies. In April 2010, VERITAS received funding to upgrade the photomultiplier tube cameras, pattern triggers, and networking systems in order to improve detector sensitivity, especially near detection threshold (E ~ 100 GeV). In this paper we describe the status of the VERITAS upgrade and the expected improvements in sensitivity when it is completed in summer 2012.

قيم البحث

اقرأ أيضاً

63 - A. Nepomuk Otte 2009
The VERITAS Cherenkov telescope array has been fully operational since Fall 2007 and has fulfilled or outperformed its design specifications. We are preparing an upgrade program with the goal to lower the energy threshold and improve the sensitivity of VERITAS at all accessible energies. In the baseline program of the upgrade we will relocate one of the four telescopes, replace the photo-sensors by higher efficiency photomultipliers and install a new trigger system. In the enhanced program of the upgrade we foresee, in addition, the construction of a fifth telescope and installation of an active mirror alignment system.
107 - Javier Gorosabel 2010
We report on optical observations of Gamma-Ray Bursts (GRBs) followed up by our collaboration with the 1.23m telescope located at the Calar Alto observatory. The 1.23m telescope is an old facility, currently undergoing upgrades to enable fully autono mous response to GRB alerts. We discuss the current status of the control system upgrade of the 1.23m telescope. The upgrade is being done by the ARAE our group, based on members of IAA (Instituto de Astrofiisica de Andalucia). Currently the ARAE group is responsible to develop the BOOTES network of robotic telescopes based on the Remote Telescope System, 2nd Version (RTS2), which controls the available instruments and interacts with the EPICS database of Calar Alto. Currently the telescope can run fully autonomously or under observer supervision using RTS2. The fast reaction response mode for GRB reaction (typically with response times below 3 minutes from the GRB onset) still needs some development and testing. The telescope is usually operated in legacy interactive mode, with periods of supervised autonomous runs under RTS2. We show the preliminary results of several GRBs followed up with observer intervention during the testing phase of the 1.23m control software upgrade.
The VERITAS Imaging Air Cherenkov Telescope array (IACT) was augmented in 2019 with high-speed focal plane electronics to allow the use of VERITAS for Stellar Intensity Interferometry (SII) observations. Since that time, several improvements have bee n implemented to increase the sensitivity of the VERITAS Stellar Intensity Interferometer (VSII) and increase the speed of nightly data processing. This poster will describe the use of IACT arrays for performing ultra-high resolution (sub-milliarcsecond) astronomical observations at short visible wavelengths. The poster presentation will include a description of the VERITAS-SII focal plane, data acquisition, and data analysis systems. The poster concludes with a description of plans for future upgrades of the VSII instrument.
113 - J. Holder , E. Aliu , T. Arlen 2011
The VERITAS telescope array has been operating smoothly since 2007, and has detected gamma-ray emission above 100 GeV from 40 astrophysical sources. These include blazars, pulsar wind nebulae, supernova remnants, gamma-ray binary systems, a starburst galaxy, a radio galaxy, the Crab pulsar, and gamma-ray sources whose origin remains unidentified. In 2009, the array was reconfigured, greatly improving the sensitivity. We summarize the current status of the observatory, describe some of the scientific highlights since 2009, and outline plans for the future.
106 - D. B. Kieda 2013
The VERITAS VHE gamma-ray observatory recently completed a major upgrade of its camera and pattern triggering systems. Bias curve testing of the upgraded VERITAS Observatory under dark sky conditions indicates a 50% increase in photon detection effic iency, and a 30% reduction in triggering threshold. Optimization of analysis of the Crab nebula observations performed in late 2012 and early 2013 is ongoing. A comparison of these results with pre-upgrade Crab observations can provide the most direct method for quantifying the impact of the upgrade on VERITAS sensitivity and energy threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا