ﻻ يوجد ملخص باللغة العربية
We pursue the investigation of a previously proposed correlation between chemical properties and physical evolutionary stage of isolated low-mass star-forming regions. In the past, the NH3/CCS abundance ratio was suggested to be a potentially useful indicator for the evolutionary stage of cloud cores. We aim to study its applicability for isolated Bok globules. A sample of 42 Bok globules with and without signs of current star formation was searched for CCS(2-1) emission, the observations were complemented with NH3 measurements available in the literature and own observations. The abundance ratio of both molecules is discussed with respect to the evolutionary stage of the objects and in the context of chemical models. The NH3/CCS ratio could be assessed for 18 Bok globules and is found to be moderately high and roughly similar across all evolutionary stages from starless and prestellar cores towards internally heated cores harbouring protostars of Class 0, Class I or later. Bok globules with extremely high CCS abundance analogous to carbon-chain producing regions in dark cloud cores are not found. The observed range of NH3/CCS hints towards a relatively evolved chemical state of all observed Bok globules.
We report the discovery of small, isolated dust clouds in the Large Magellanic Cloud, which are excellent candidates for counterparts to the Bok globules observed in the Galaxy. We detect these small clouds silhoutted against diffuse H-alpha emission
We performed an observational study of the relation between the interstellar magnetic field alignment and star formation in twenty (20) sky regions containing Bok Globules. The presence of young stellar objects in the globules is verified by a search
We present the results of a comprehensive infrared, submillimetre, and millimetre continuum emission study of isolated low-mass star-forming cores in 32 Bok globules, with the aim to investigate the process of star formation in these regions. The sub
On the basis of near-infrared imaging observations, we derived visual extinction (Av) distribution toward ten Bok globules through measurements of both the color excess (E_{H-K}) and the stellar density at J, H, and Ks (star count). Radial column den
[abridged] The role of magnetic fields in the process of star formation is a matter of continuous debate. Clear observational proof of the general influence of magnetic fields on the early phase of cloud collapse is still pending. First results on Bo