ترغب بنشر مسار تعليمي؟ اضغط هنا

On the group theoretical background of assigning stepwise mutations onto phylogenies

81   0   0.0 ( 0 )
 نشر من قبل Mareike Fischer
 تاريخ النشر 2011
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper, Klaere et al. modeled the impact of substitutions on arbitrary branches of a phylogenetic tree on an alignment site by the so-called One Step Mutation (OSM) matrix. By utilizing the concept of the OSM matrix for the four-state nucleotide alphabet, Nguyen et al. presented an efficient procedure to compute the minimal number of substitutions needed to translate one alignment site into another.The present paper delivers a proof for this computation.Moreover, we provide several mathematical insights into the generalization of the OSM matrix to multistate alphabets.The construction of the OSM matrix is only possible if the matrices representing the substitution types acting on the character states and the identity matrix form a commutative group with respect to matrix multiplication. We illustrate a means to establish such a group for the twenty-state amino acid alphabet and critically discuss its biological usefulness.

قيم البحث

اقرأ أيضاً

We present an efficient and flexible method for computing likelihoods of phenotypic traits on a phylogeny. The method does not resort to Monte-Carlo computation but instead blends Felsensteins discrete character pruning algorithm with methods for num erical quadrature. It is not limited to Gaussian models and adapts readily to model uncertainty in the observed trait values. We demonstrate the framework by developing efficient algorithms for likelihood calculation and ancestral state reconstruction under Wrights threshold model, applying our methods to a dataset of trait data for extrafloral nectaries (EFNs) across a phylogeny of 839 Labales species.
Stochastic models of evolution (Markov random fields on trivalent trees) generally assume that different characters (different runs of the stochastic process) are independent and identically distributed. In this paper we take the first steps towards addressing dependent characters. Specifically we show that, under certain technical assumptions regarding the evolution of individual characters, we can detect any significant, history independent, correlation between any pair of multistate characters. For the special case of the Cavender-Farris-Neyman (CFN) model on two states with symmetric transition matrices, our analysis needs milder assumptions. To perform the analysis, we need to prove a new concentration result for multistate random variables of a Markov random field on arbitrary trivalent trees: we show that the random variable counting the number of leaves in any particular subset of states has variance that is subquadratic in the number of leaves.
116 - Vasily Ogryzko 2009
I compare two quantum-theoretical approaches to the phenomenon of adaptive mutations, termed here Q-cell and Q-genome. I use fluctuation trapping model as a general framework. I introduce notions of R-error and D-error and argue that the fluctuation trapping model has to employ a correlation between the R- and D- errors. Further, I compare how the two approaches can justify the R-D-error correlation, focusing on the advantages of the Q-cell approach. The positive role of environmentally induced decoherence (EID) on both steps of the adaptation process is emphasized. A starving bacterial cell is proposed to be in an einselected state. The intracellular dynamics in this state has a unitary character and I propose to interpret it as exponential growth in imaginary time, analogously to the commonly considered diffusion interpretation of the Schroedinger equation. Addition of a substrate leads to Wick rotation and a switch from imaginary time reproduction to a real time reproduction regime. Due to the variations at the genomic level (such as base tautomery), the starving cell has to be represented as a superposition of different components, all reproducing in imaginary time. Adidtion of a selective substrate, allowing only one of these components to amplify, will cause Wick rotation and amplification of this component, thus justifying the occurence of the R-D-error correlation. Further ramifications of the proposed ideas for evolutionary theory are discussed.
Data from a long time evolution experiment with Escherichia Coli and from a large study on copy number variations in subjects with european ancestry are analyzed in order to argue that mutations can be described as Levy flights in the mutation space. These Levy flights have at least two components: random single-base substitutions and large DNA rearrangements. From the data, we get estimations for the time rates of both events and the size distribution function of large rearrangements.
75 - Augusto Gonzalez 2015
Levy flights in the space of mutations model time evolution of bacterial DNA. Parameters in the model are adjusted in order to fit observations coming from the Long Time Evolution Experiment with E. Coli.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا