ﻻ يوجد ملخص باللغة العربية
We present an elementary proof based on a direct calculation of the property of completeness at constant time of the solutions of the Klein-Gordon equation for a charged particle in a plane wave electromagnetic field. We also review different forms of the orthogonality and completeness relations previously presented in the literature and we discuss the possibility to construct the Feynman propagator for the particle in a plane-wave laser pulse as an expansion in terms of Volkov solutions. We show that this leads to a rigorous justification for the expression of the transition amplitude, currently used in the literature, for a class of laser assisted or laser induced processes.
It is known that the Maxwell-Klein-Gordon equations in $mathbb{R}^{3+1}$ admit global solutions with finite energy data. In this paper, we present a new approach to study the asymptotic behavior of these global solutions. We show the quantitative ene
In this paper we prove the existence of vortices, namely standing waves with non null angular momentum, for the nonlinear Klein-Gordon equation in dimension $Ngeq 3$. We show with variational methods that the existence of these kind of solutions, tha
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group cor
We present a new axially symmetric monochromatic free-space solution to the Klein-Gordon equation propagating with a superluminal group velocity and show that it gives rise to an imaginary part of the causal propagator outside the light cone. We addr