ﻻ يوجد ملخص باللغة العربية
We investigate in this paper the origin of perpendicular anisotropy in Co (1.6 nm)/Pt (3.0 nm) bilayers grown on alumina and annealed up to 650$^{circ}$C. Above 350$^{circ}$C, all layers exhibit perpendicular anisotropy. Then coercive fields increase linearly with annealing temperature following two different rates: 0.05 T/100$^{circ}$C below 550$^{circ}$C and 0.8 T/100$^{circ}$C above. By making careful structural characterizations using x-ray diffraction and transmission electron microscopy, we demonstrate the presence of short range correlation of L1$_{1}$ type below 550$^{circ}$C whereas above 550$^{circ}$C, L1$_{0}$ chemical ordering is observed. We conclude that perpendicular anisotropy observed in Co/Pt bilayers grown on alumina and annealed may not only be due to interface anisotropy as usually invoked but also to CoPt alloying and chemical ordering that take place during post-growth annealing.
We have studied the magnetic properties of multilayers composed of ferromagnetic metal Co and heavy metals with strong spin orbit coupling (Pt and Ir). Multilayers with symmetric (ABA stacking) and asymmetric (ABC stacking) structures are grown to st
We report on magnetic domain wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examina
Nonreciprocal charge transport, which is frequently termed as electrical magnetochiral anisotropy (EMCA) in chiral conductors, touches the most important elements of modern condensed matter physics. Here, we have investigated the EMCA in Pt/PtMnGa (P
A combination of theoretical modelling and experiments reveals the origin of the large perpendicular magnetic anisotropy (PMA) that appears in nanometer-thick epitaxial Co films intercalated between graphene (Gr) and a heavy metal (HM) substrate, as
We have investigated crystalline magnetic anisotropy in the electric field (EF) for the Fe-Pt surface which have a large perpendicular anisotropy, by means of the first-principles approach. The anisotropy is reduced linearly with respect to the inwar