ﻻ يوجد ملخص باللغة العربية
We analyse 3-min oscillations of microwave and EUV emission generated at different heights of a sunspot atmosphere, studying the amplitude and frequency modulation of the oscillations, and its relationship with the variation of the spatial structure of the oscillations. High-resolution data obtained with the Nobeyama Radioheliograph, TRACE and SDO/AIA are analysed with the use of the Pixelised Wavelet Filtering and wavelet skeleton techniques. 3-min oscillations in sunspots appear in the form of repetitive trains of the duration 8-20 min (13 min in average). The typical interval between the trains is 30-50 min. The oscillation trains are transient in frequency and power. We detected a repetitive frequency drifts of 3-min oscillations during the development of individual trains. Wavelet analysis shows three types of the frequency drift: positive, negative and fluctuations without drift. The start and end of the drifts coincide with the start time and end of the train. The comparative study of 3-min oscillations in the sequences of microwave and EUV images show the appearance of new sources of the oscillations in sunspots during the development of the trains. These structures can be interpreted as waveguides that channel upward propagating waves, responsible for 3-min oscillations. A possible explanation of the observed properties is the operation of two simultaneous factors: dispersive evolution of the upwardly-propagating wave pulses and the non-uniformity of the distribution of the oscillation power over the sunspot umbra with different wave sources corresponding to different magnetic flux tubes with different physical conditions and line-of-sight angles.
Context. An analysis of the oscillations above sunspots was carried out using simultaneous ground-based and Solar Dynamics Observatory (SDO) observations (SiI 10827A, HeI 10830A, FeI 6173A, 1700A, HeII 304A, FeIX 171A). Aims. Investigation of the s
Oscillation properties in two sunspots and two facular regions are studied using Solar Dynamics Observatory (SDO) data and ground-based observations in the SiI 10827 and HeI 10830 lines. The aim is to study different-frequency spatial distribution ch
We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above
Aims: The aim of this paper is to demonstrate that millimeter wave data can be used to distinguish between various atmospheric models of sunspots, whose temperature structure in the upper photosphere and chromosphere has been the source of some contr
In this work we seek evidence for global torsional oscillations in alpha sunspots. We have used long time series of continuum intensity and magnetic field vector maps from the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynam