ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to propose a classical model of quantum fields which is local. Yet it admittedly violates relativity as we know it and, instead, it fits within a bimetric model with one metric corresponding to speed of light and another metric to superlumianl signals whose speed is still finite albeit very large. The key obstacle to such model is the notion of functional in the context of QFT which is inherently non-local. The goal of this paper is to stop viewing functionals as fundamental and instead model their emergence from the deeper processes that are based on functions over $mathbb{R}^4$ alone. The latter are claimed to be local in the above bimetric sense.
A system of coupled kinetic transport equations for the Wigner distributions of a free variable mass Klein-Gordon field is derived. This set of equations is formally equivalent to the full wave equation for electromagnetic waves in nonlinear dispersi
The goal of this paper is to re-express QFT in terms of two classical fields living in ordinary space with single extra dimension. The role of the first classical field is to set up an injection from the set of values of extra dimension into the set
In this note, we consider discrete nonlinear Klein-Gordon equations with potential. By the pioneering work of Sigal, it is known that for the continuous nonlinear Klein-Gordon equation, no small time periodic solution exists generically. However, for
We study the ladder operator on scalar fields, mapping a solution of the Klein-Gordon equation onto another solution with a different mass, when the operator is at most first order in derivatives. Imposing the commutation relation between the dAlembe
Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwells equations are present upon variation of the fundamental Lagrangian; (ii) the trace of the canonical energy-momentum te