ﻻ يوجد ملخص باللغة العربية
We show that the double diffractive electroweak vector boson production in the $pp$ collisions at the LHC is an ideal probe of QCD based mechanisms of diffraction. Assuming the resolved Pomeron model with flavor symmetric parton distributions, the $W$ production asymmetry in rapidity equals exactly zero. In other approaches, like the soft color interaction model, in which soft gluon exchanges are responsible for diffraction, the asymmetry is non-zero and equal to that in the inclusive $W$ production. In the same way, the ratio of the $W$ to $Z$ boson production is independent of rapidity in the models with resolved Pomeron in contrast to the predictions of the soft color interaction model.
We analyse diffractive electroweak vector boson production in hadronic collisions and show that the single diffractive W boson production asymmetry in rapidity is a particularly good observable at the LHC to test the concept of the flavour symmetric
Vector-boson scattering (VBS) processes probe the innermost structure of electroweak interactions in the Standard Model, and provide a unique sensitivity for new physics phenomena affecting the gauge sector. In this review, we report on the salient a
Several extensions of the Standard Model predict the existence of new neutral spin-1 resonances associated to the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L=1.02 fb^{-1}) and CMS (with integrated
The model independent bounds on new neutral vector resonances masses, couplings and widths presented at arxiv:1112.0316 are updated with an integrated luminosity of L=4.7 fb^-1 from ATLAS and L=4.6 fb^-1 from CMS. These exclusion limits correspond to
The Standard Model of fundamental interactions, albeit an incredibly elegant and successful theory, lacks explanations for some experimental and theoretical open questions. Interestingly, many of these problems seem to be related to the electroweak s