ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic Duals of Quark Gluon Plasmas with Unquenched Flavors

122   0   0.0 ( 0 )
 نشر من قبل Aldo Lorenzo Cotrone
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the construction of gravitational solutions holographically dual to N=1 quiver gauge theories with dynamical flavor multiplets. We focus on the D3-D7 construction and consider the finite temperature, finite quark chemical potential case where there is a charged black hole in the dual solution. Discussed physical outputs of the model include its thermodynamics (with susceptibilities) and general hydrodynamic properties.


قيم البحث

اقرأ أيضاً

We employ the string/gauge theory correspondence to study properties of strongly coupled quark-gluon plasmas in thermal gauge theories with a large number of colors and flavors. In particular, we analyze non-critical string duals of conformal (S)QCD, as well as ten dimensional wrapped fivebrane duals of SQCD-like theories. We study general properties of the dual plasmas, including the drag force exerted on a probe quark and the jet quenching parameter. We find that these plasma observables depend on the number of colors and flavors in the ``QCD dual; in particular, we find that the jet quenching parameter increases linearly with N_f/N_c at leading order in the probe limit. In the ten dimensional case we find a non trivial drag coefficient but a vanishing jet quenching parameter. We comment on the relation of this result with total screening and argue that the same features are shared by all known plasmas dual to fivebranes in ten dimensions. We also construct new D5 black hole solutions with spherical horizon and show that they exhibit the same features.
Holography provides a novel method to study the physics of Quark Gluon Plasmas, complementary to the ordinary field theory and lattice approaches. In this context, we analyze the informations that can be obtained for strongly coupled Plasmas containi ng dynamical flavors, also in the presence of a finite baryon chemical potential. In particular, we discuss the jet quenching and the hydrodynamic transport coefficients.
We study the static potential between external quark-antiquark pairs in a strongly coupled gauge theory with a large number of colors and massive dynamical flavors, using a dual string description. When the constituent mass of the dynamical quarks is set below a certain critical value, we find a first order phase transition between a linear and a Coulomb-like regime. Above the critical mass the two phases are smoothly connected. We also study the dependence on the theory parameters of the quark-antiquark separation at which the static configuration decays into specific static-dynamical mesons.
We explain a method for computing the bulk viscosity of strongly coupled thermal plasmas dual to supergravity backgrounds supported by one scalar field. Whereas earlier investigations required the computation of the leading dissipative term in the di spersion relation for sound waves, our method requires only the leading frequency dependence of an appropriate Greens function in the low-frequency limit. With a scalar potential chosen to mimic the equation of state of QCD, we observe a slight violation of the lower bound on the ratio of the bulk and shear viscosities conjectured in arXiv:0708.3459.
We construct the string duals of the defect theories generated when N_f flavor D5-branes intersect N_c color D3-branes along a 2+1 dimensional subspace. We work in the Veneziano limit in which N_c and N_f are large and N_f/N_c is fixed. By smearing t he D5-branes, we find supergravity solutions that take into account the backreaction of the flavor branes and preserve two supercharges. When the flavors are massless the resulting metric displays an anisotropic Lifshitz-like scale invariance. The case of massive quarks is also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا