ﻻ يوجد ملخص باللغة العربية
We review the construction of gravitational solutions holographically dual to N=1 quiver gauge theories with dynamical flavor multiplets. We focus on the D3-D7 construction and consider the finite temperature, finite quark chemical potential case where there is a charged black hole in the dual solution. Discussed physical outputs of the model include its thermodynamics (with susceptibilities) and general hydrodynamic properties.
We employ the string/gauge theory correspondence to study properties of strongly coupled quark-gluon plasmas in thermal gauge theories with a large number of colors and flavors. In particular, we analyze non-critical string duals of conformal (S)QCD,
Holography provides a novel method to study the physics of Quark Gluon Plasmas, complementary to the ordinary field theory and lattice approaches. In this context, we analyze the informations that can be obtained for strongly coupled Plasmas containi
We study the static potential between external quark-antiquark pairs in a strongly coupled gauge theory with a large number of colors and massive dynamical flavors, using a dual string description. When the constituent mass of the dynamical quarks is
We explain a method for computing the bulk viscosity of strongly coupled thermal plasmas dual to supergravity backgrounds supported by one scalar field. Whereas earlier investigations required the computation of the leading dissipative term in the di
We construct the string duals of the defect theories generated when N_f flavor D5-branes intersect N_c color D3-branes along a 2+1 dimensional subspace. We work in the Veneziano limit in which N_c and N_f are large and N_f/N_c is fixed. By smearing t