ترغب بنشر مسار تعليمي؟ اضغط هنا

Kicking electrons

49   0   0.0 ( 0 )
 نشر من قبل Jan M. Rost
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of dominant interaction hamiltonians is introduced and applied to classical planar electron-atom scattering. Each trajectory is governed in different time intervals by two variants of a separable approximate hamiltonian. Switching between them results in exchange of energy between the two electrons. A second mechanism condenses the electron-electron interaction to instants in time and leads to an exchange of energy and angular momentum among the two electrons in form of kicks. We calculate the approximate and full classical deflection functions and show that the latter can be interpreted in terms of the switching sequences of the approximate one. Finally, we demonstrate that the quantum results agree better with the approximate classical dynamical results than with the full ones.

قيم البحث

اقرأ أيضاً

The physics of the dark energy that drives the current cosmological acceleration remains mysterious, and the dark sector may involve new light dynamical fields. If these light scalars couple to matter, a screening mechanism must prevent them from med iating an unacceptably strong fifth force locally. Here we consider a concrete example: the chameleon mechanism. We show that the same coupling between the chameleon field and matter employed by the screening mechanism also has catastrophic consequences for the chameleon during the Universes first minutes. The chameleon couples to the trace of the stress-energy tensor, which is temporarily non-zero in a radiation-dominated universe whenever a particle species becomes non-relativistic. These kicks impart a significant velocity to the chameleon field, causing its effective mass to vary non-adiabatically and resulting in the copious production of quantum fluctuations. Dissipative effects strongly modify the background evolution of the chameleon field, invalidating all previous classical treatments of chameleon cosmology. Moreover, the resulting fluctuations have extremely high characteristic energies, which casts serious doubt on the validity of the effective theory. Our results demonstrate that quantum particle production can profoundly affect scalar-tensor gravity, a possibility not previously considered. Working in this new context, we also develop the theory and numerics of particle production in the regime of strong dissipation.
Intense X-ray free-electron lasers (XFELs) can rapidly excite matter, leaving it in inherently unstable states that decay on femtosecond timescales. As the relaxation occurs primarily via Auger emission, excited state observations are constrained by Auger decay. In situ measurement of this process is therefore crucial, yet it has thus far remained elusive at XFELs due to inherent timing and phase jitter, which can be orders of magnitude larger than the timescale of Auger decay. Here, we develop a new approach termed self-referenced attosecond streaking, based upon simultaneous measurements of streaked photo- and Auger electrons. Our technique enables sub-femtosecond resolution in spite of jitter. We exploit this method to make the first XFEL time-domain measurement of the Auger decay lifetime in atomic neon, and, by using a fully quantum-mechanical description, retrieve a lifetime of $2.2^{ + 0.2}_{ - 0.3}$ fs for the KLL decay channel. Importantly, our technique can be generalised to permit the extension of attosecond time-resolved experiments to all current and future FEL facilities.
The method of McCurdy, Baertschy, and Rescigno, J. Phys. B, 37, R137 (2004) is generalized to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. The calculation of contracted two-electron matrix elements among orbitals requires only O(N log(N)) multiplication operations, not O(N^4), where N is the number of basis functions; N = n^3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionization potentials are reported for one- (He^+, H_2^+ ), two- (H_2, He), ten- (CH_4) and 56-electron (C_8H_8) systems.
Electron backscattering is introduced as mechanism to enhance high-harmonic generation in solid-state like systems with broken translational symmetry. As a paradigmatic example we derive for a finite chain of $N$ atoms the harmonic cut-off through ba ckscattering of electrons in the conduction band from the edges of the chain. We also demonstrate a maximum in the yield of the high harmonics from the conduction band if twice the quiver amplitude of the driven electrons equals the length of the chain. High-harmonic spectra as a function of photon energy are shown to be equivalent if the ratio of chain length to the wavelength of the light is kept constant. Our quantum results are corroborated by a (semi-)classical trajectory model with refined spatial properties required to describe dynamics with trajectories in the presence of broken translational symmetry.
379 - K. Spruck 2014
We present new experimentally measured and theoretically calculated rate coefficients for the electron-ion recombination of W$^{18+}$([Kr] $4d^{10}$ $4f^{10}$) forming W$^{17+}$. At low electron-ion collision energies, the merged-beam rate coefficien t is dominated by strong, mutually overlapping, recombination resonances. In the temperature range where the fractional abundance of W$^{18+}$ is expected to peak in a fusion plasma, the experimentally derived Maxwellian recombination rate coefficient is 5 to 10 times larger than that which is currently recommended for plasma modeling. The complexity of the atomic structure of the open-$4f$-system under study makes the theoretical calculations extremely demanding. Nevertheless, the results of new Breit-Wigner partitioned dielectronic recombination calculations agree reasonably well with the experimental findings. This also gives confidence in the ability of the theory to generate sufficiently accurate atomic data for the plasma modeling of other complex ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا