ترغب بنشر مسار تعليمي؟ اضغط هنا

Helac-nlo

101   0   0.0 ( 0 )
 نشر من قبل Costas Papadopoulos
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the OPP technique and the HELAC framework, HELAC-1LOOP is a program that is capable of numerically evaluating QCD virtual corrections to scattering amplitudes. A detailed presentation of the algorithm is given, along with instructions to run the code and benchmark results. The program is part of the HELAC-NLO framework that allows for a complete evaluation of QCD NLO corrections.



قيم البحث

اقرأ أيضاً

Achieving a precise description of multi-parton final states is crucial for many analyses at LHC. In this contribution we review the main features of the HELAC-NLO system for NLO QCD calculations. As a case study, NLO QCD corrections for tt + 2 jet production at LHC are illustrated and discussed.
121 - Nikolas Kauer 2012
Theoretical predictions for scattering processes with multi-particle final states at next-to-leading order (NLO) in perturbative QCD are essential to fully exploit the physics potential of present and future high-energy colliders. The status of NLO QCD calculations and tools is reviewed.
The production of WWZ at the LHC is an important process to test the quartic gauge couplings of the Standard Model as well as an important background for new physics searches. A good theoretical understanding at next-to-leading order (NLO) is therefo re valuable. In this paper, we present the calculation of the NLO electroweak (EW) correction to this channel with on-shell gauge bosons in the final state. It is then combined with the NLO QCD correction to get the most up-to-date prediction. We study the impact of these corrections on the total cross section and some distributions. The NLO EW correction is small for the total cross section but becomes important in the high energy regime for the gauge boson transverse momentum distributions.
152 - Julien Baglio , Le Duc Ninh 2019
The pair production of a $W$ and a $Z$ boson at the LHC is an important process to study the triple-gauge boson couplings as well as to probe new physics that could arise in the gauge sector. In particular the leptonic channel $p p to W^pm Zto 3ell + u + X$ is considered by ATLAS and CMS collaborations. Polarisation observables can help pinning down new physics and give information on the spin of the gauge bosons. Measuring them requires high statistics as well as precise theoretical predictions. We define in this contribution fiducial polarisation observables for the $W$ and $Z$ bosons and we present theoretical predictions in the Standard Model at next-to-leading order (NLO) including QCD as well as NLO electroweak corrections, the latter in the double-pole approximation. We also show that this approximation works remarkably well for $W^pm Z$ production at the LHC by comparing to the full results.
We calculate large mass diphoton exclusive photoproduction in the framework of collinear QCD factorization at next to leading order in {alpha}s and at leading twist. Collinear divergences of the coefficient function are absorbed by the evolution of t he generalized parton distributions (GPDs). This result enlarges the existing factorization proofs to 2 -> 3 processes, opening new reactions to a trustable extraction of GPDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا