ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipative and conservative nonlinearity in carbon nanotube and graphene mechanical resonators

120   0   0.0 ( 0 )
 نشر من قبل Joel Moser
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene and carbon nanotubes represent the ultimate size limit of one and two-dimensional nanoelectromechanical resonators. Because of their reduced dimensionality, graphene and carbon nanotubes display unusual mechanical behavior; in particular, their dynamics is highly nonlinear. Here, we review several types of nonlinear behavior in resonators made from nanotubes and graphene. We first discuss an unprecedented scenario where damping is described by a nonlinear force. This scenario is supported by several experimental facts: (i) the quality factor varies with the amplitude of the motion as a power law whose exponent coincides with the value predicted by the nonlinear damping model, (ii) hysteretic behavior (of the motional amplitude as a function of driving frequency) is absent in some of our resonators even for large driving forces, as expected when nonlinear damping forces are large, and (iii) when we quantify the linear damping force (by performing parametric excitation measurements) we find that it is significantly smaller than the nonlinear damping force. We then review parametric excitation measurements, an alternative actuation method which is based on nonlinear dynamics. Finally, we discuss experiments where the mechanical motion is coupled to electron transport through a nanotube. The coupling can be made so strong that the associated force acting on the nanotube becomes highly nonlinear with displacement and velocity. Overall, graphene and nanotube resonators hold promise for future studies on classical and quantum nonlinear dynamics.

قيم البحث

اقرأ أيضاً

113 - A. Eichler , J. Moser , J. Chaste 2011
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at the mesoscopic scale. Here, we have discovered that the dynamics of nanotube and graphene resonators is in fact highly exotic. We propose an unprecedented scenario where mechanical dissipation is entirely determined by nonlinear damping. As a striking consequence, the quality factor Q strongly depends on the amplitude of the motion. This scenario is radically different from that of other resonators, whose dissipation is dominated by a linear damping term. We believe that the difference stems from the reduced dimensionality of carbon nanotubes and graphene. Besides, we exploit the nonlinear nature of the damping to improve the figure of merit of nanotube/graphene resonators.
158 - A. Voje , J. M. Kinaret , 2011
We study the quantum dynamics of a symmetric nanomechanical graphene resonator with degenerate flexural modes. Applying voltage pulses to two back gates, flexural vibrations of the membrane can be selectively actuated and manipulated. For graphene, n onlinear response becomes important already for amplitudes comparable to the magnitude of zero point fluctuations. We show, using analytical and numerical methods, that this allows for creation of cat-like superpositions of coherent states as well as superpositions of coherent cat-like non-product states.
In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, while time domain techniques such as ringdown measurements can separate the two. Here, we report the first observation of the mechanical ringdown of a carbon nanotube mechanical resonator. Comparing the mechanical quality factor obtained from frequency- and time-domain measurements, we find a spectral quality factor four times smaller than that measured in ringdown, demonstrating dephasing-induced decoherence of the nanomechanical motion. This decoherence is seen to arise at high driving amplitudes, pointing to a non-linear dephasing mechanism. Our results highlight the importance of time-domain techniques for understanding dissipation in nano-mechanical resonators, and the relevance of decoherence mechanisms in nanotube mechanics.
Elementary electronic excitations, which are due to the Coulomb-field scatterings, present the diverse phenomena in 3D, 2D, 1D-nanotube electron gases, graphene and carbon nanotubes. The critical mechanisms cover the dimension-dependent bare Coulomb potentials, energy dispersions, and free/valence carrier density. They are responsible for the main features, the available excitation channels (the electron-hole regions), the joint van Hove singularities, the undamped/damped collective excitations at small/sufficiently high transferred momenta, the momentum dependences of plasmon frequencies (acoustic and optical modes), and their categories (the intraband and inter-pi-band plasmons). There exists certain significant similarities and difference among various systems. The (momentum/ angular momentum, frequency)-excitation phase diagrams are directly reflected in the propagation of plasma waves.
Carbon nanotube mechanical resonators have attracted considerable interest because of their small mass, the high quality of their surface, and the pristine electronic states they host. However, their small dimensions result in fragile vibrational sta tes that are difficult to measure. Here we observe quality factors $Q$ as high as $5times10^6$ in ultra-clean nanotube resonators at a cryostat temperature of 30 mK, where we define $Q$ as the ratio of the resonant frequency over the linewidth. Measuring such high quality factors requires both employing an ultra-low noise method to detect minuscule vibrations rapidly, and carefully reducing the noise of the electrostatic environment. We observe that the measured quality factors fluctuate because of fluctuations of the resonant frequency. The quality factors we measure are record high; they are comparable to the highest $Q$ reported in mechanical resonators of much larger size, a remarkable result considering that reducing the size of resonators is usually concomitant with decreasing quality factors. The combination of ultra-low size and very large $Q$ offers new opportunities for ultra-sensitive detection schemes and quantum optomechanical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا