ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for faint companions with VLTI/PIONIER. I. Method and first results

258   0   0.0 ( 0 )
 نشر من قبل Olivier Absil
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. A new four-telescope interferometric instrument called PIONIER has recently been installed at VLTI. It provides improved imaging capabilities together with high precision. Aims. We search for low-mass companions around a few bright stars using different strategies, and determine the dynamic range currently reachable with PIONIER. Methods. Our method is based on the closure phase, which is the most robust interferometric quantity when searching for faint companions. We computed the chi^2 goodness of fit for a series of binary star models at different positions and with various flux ratios. The resulting chi^2 cube was used to identify the best-fit binary model and evaluate its significance, or to determine upper limits on the companion flux in case of non detections. Results. No companion is found around Fomalhaut, tau Cet and Regulus. The median upper limits at 3 sigma on the companion flux ratio are respectively of 2.3e-3 (in 4 h), 3.5e-3 (in 3 h) and 5.4e-3 (in 1.5 h) on the search region extending from 5 to 100 mas. Our observations confirm that the previously detected near-infrared excess emissions around Fomalhaut and tau Cet are not related to a low-mass companion, and instead come from an extended source such as an exozodiacal disk. In the case of del Aqr, in 30 min of observation, we obtain the first direct detection of a previously known companion, at an angular distance of about 40 mas and with a flux ratio of 2.05e-2 pm 0.16e-2. Due to the limited u,v plane coverage, its position can, however, not be unambiguously determined. Conclusions. After only a few months of operation, PIONIER has already achieved one of the best dynamic ranges world-wide for multi-aperture interferometers. A dynamic range up to about 1:500 is demonstrated, but significant improvements are still required to reach the ultimate goal of directly detecting hot giant extrasolar planets.



قيم البحث

اقرأ أيضاً

The Exozodi survey aims to determine the occurrence rate of bright exozodiacal discs around nearby main sequence stars using infrared interferometry. Although the Exozodi survey targets have been carefully selected to avoid the presence of binary sta rs, the results of this survey can still be biased by the presence of unidentified stellar companions. Using the PIONIER data set collected within the Exozodi survey, we aim to search for the signature of point-like companions around the Exozodi target stars. We use both the closure phases and squared visibilities collected by PIONIER to search for companions within the ~100 mas interferometric field of view. The presence of a companion is assessed by computing the goodness of fit to the data for a series of binary models with various separations and contrasts. Five stellar companions are resolved for the first time around five A-type stars: HD 4150, HD 16555, HD 29388, HD 202730, and HD 224392 (although the companion to HD 16555 was independently resolved by speckle interferometry while we were carrying out the survey). In the most likely case of main sequence companions, their spectral types range from A5V to K4V. Three of these stars were already suspected to be binaries from Hipparcos astrometric measurements, although no information was available on the companions themselves so far. In addition to debiasing the statistics of the Exozodi survey, these results can also be used to revise the fraction of visual binaries among A-type stars, suggesting that an extra ~13% A-type stars are visual binaries in addition to the ones detected in previous direct imaging surveys. We estimate that about half the population of nearby A-type stars could be resolved as visual binaries using a combination of state-of-the-art interferometry and single-aperture imaging, and we suggest that a significant fraction of these binaries remains undetected to date.
Context. Detecting and characterizing circumstellar dust is a way to study the architecture and evolution of planetary systems. Cold dust in debris disks only traces the outer regions. Warm and hot exozodiacal dust needs to be studied in order to tra ce regions close to the habitable zone. Aims. We aim to determine the prevalence and to constrain the properties of hot exozodiacal dust around nearby main-sequence stars. Methods. We search a magnitude limited (H < 5) sample of 92 stars for bright exozodiacal dust using our VLTI visitor instrument PIONIER in the H-band. We derive statistics of the detection rate with respect to parameters such as the stellar spectral type and age or the presence of a debris disk in the outer regions of the systems. We derive more robust statistics by combining our sample with the results from our CHARA/FLUOR survey in the K-band. In addition, our spectrally dispersed data allows us to put constraints on the emission mechanism and the dust properties in the detected systems. Results. We find an over-all detection rate of bright exozodiacal dust in the H-band of 11% (9 out of 85 targets) and three tentative detections. The detection rate decreases from early type to late type stars and increases with the age of the host star. We do not confirm the tentative correlation between the presence of cold and hot dust found in our earlier analysis of the FLUOR sample alone. Our spectrally dispersed data suggest that either the dust is extremely hot or the emission is dominated by the scattered light in most cases. The implications of our results for the target selection of future terrestrial planet finding missions using direct imaging are discussed.
Protoplanetary disks contain structures such as gaps, rings, and spirals, which are thought to be produced by the interaction between the disk and embedded protoplanets. However, only a few planet candidates are found orbiting within protoplanetary d isks, and most of them are being challenged as having been confused with disk features. We aim to discover more proto-planetary candidates with MUSE, with a secondary aim of improving the high-resolution spectral differential imaging (HRSDI) technique by analyzing the instrumental residuals of MUSE. We analyzed MUSE observations of five young stars and applied the HRSDI technique to perform high-contrast imaging. With a 30 min integration time, MUSE can reach 5$sigma$ detection limits in apparent H$alpha$ line flux down to 10$^{-14}$ and 10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ at 0.075 and 0.25, respectively. In addition to PDS 70 b and c, we did not detect any clear accretion signatures in PDS 70, J1850-3147, and V1094 Sco down to 0.1. MUSE avoids the small sample statistics problem by measuring the noise characteristics in the spatial direction at multiple wavelengths. We detected two asymmetric atomic jets in HD 163296. The HRSDI technique when applied to MUSE data allows us to reach the photon noise limit at small separations (i.e., < 0.5). With a higher spectral resolution, MUSE can achieve fainter detection limits in apparent line flux than SPHERE/ZIMPOL by a factor of $sim$5. MUSE has some instrumental issues that limit the contrast that appear in cases with strong point sources, which can be either a spatial point source due to high Strehl observations or a spectral point source due to a high line-to-continuum ratio. We modified the HRSDI technique to better handle the instrumental artifacts and improve the detection limits.
Context : The properties of the inner disks of bright Herbig AeBe stars have been studied with near infrared (NIR) interferometry and high resolution spectroscopy. The continuum and a few molecular gas species have been studied close to the central s tar; however, sensitivity problems limit direct information about the inner disks of the fainter T Tauri stars. Aims : Our aim is to measure some of the properties of the inner regions of disks surrounding southern T Tauri stars. Methods : We performed a survey with the PIONIER recombiner instrument at H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m, corresponding to a maximum resolution of 3mas (0.45 au at 150 pc). Results : Thirteen disks are resolved well and the visibility curves are fully sampled as a function of baseline in the range 45-130 m for these 13 objects. A simple qualitative examination of visibility profiles allows us to identify a rapid drop-off in the visibilities at short baselines in 8 resolved disks. This is indicative of a significant contribution from an extended contribution of light from the disk. We demonstrate that this component is compatible with scattered light, providing strong support to a prediction made by Pinte et al. (2008). The amplitude of the drop-off and the amount of dust thermal emission changes from source to source suggesting that each disk is different. A by-product of the survey is the identification of a new milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data of AK Sco have also been fitted with a binary and disk model. Conclusions : Visibility data are reproduced well when thermal emission and scattering form dust are fully considered. The inner radii measured are consistent with the expected dust sublimation radii. Modelling of AK Sco suggests a likely coplanarity between the disk and the binarys orbital plane
We report here on initial results from the Thousand Pulsar Array (TPA) programme, part of the Large Survey Project MeerTime on the MeerKAT telescope. The interferometer is used in tied-array mode in the band from 856 to 1712~MHz, and the wide band co upled with the large collecting area and low receiver temperature make it an excellent telescope for the study of radio pulsars. The TPA is a 5 year project which aims to observe (a) more than 1000 pulsars to obtain high-fidelity pulse profiles, (b) some 500 of these pulsars over multiple epochs, (c) long sequences of single-pulse trains from several hundred pulsars. The scientific outcomes from the programme will include determination of pulsar geometries, the location of the radio emission within the pulsar magnetosphere, the connection between the magnetosphere and the crust and core of the star, tighter constraints on the nature of the radio emission itself as well as interstellar medium studies. First results presented here include updated dispersion measures, 26 pulsars with Faraday rotation measures derived for the first time and a description of interesting emission phenomena observed thus far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا