ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformal use of retarded Greens functions for the Maxwell field in de Sitter space

386   0   0.0 ( 0 )
 نشر من قبل Huguet Eric
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new propagation formula for the Maxwell field in de Sitter space which exploit the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Greens function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.



قيم البحث

اقرأ أيضاً

200 - S. Faci , E. Huguet , J. Queva 2009
In this article, we quantize the Maxwell (massless spin one) de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO$_0(2,4)$ group and consequently under the de Sitter group. We obtain a new de Sitter invariant two-points function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in $setR^6$ and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.
132 - E. Huguet , J. Queva , J. Renaud 2008
In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal (i.e. SO(2,$d$)) invariance of the conformal scalar field on both spaces. We exhibit the realizati on on de Sitter space of the massless scalar representation of SO$(2,d)$. It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms.
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo rth between two radii. The parameter space where these oscillating solutions exist is scanned in arbitrary number of dimensions. As expected AdS3 appears to be singled out.
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordstrom-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any non-extremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compu te the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا