ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards constraining the central black holes properties by studying its infrared flares with the GRAVITY instrument

58   0   0.0 ( 0 )
 نشر من قبل Frederic H. Vincent
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability of the near future second generation VLTI instrument GRAVITY to constrain the properties of the Galactic center black hole is investigated. The Galactic center infrared flares are used as probes of strong-field gravity, within the framework of the hot spot model according to which the flares are the signature of a blob of gas orbiting close to the black holes innermost stable circular orbit. Full general relativistic computations are performed, together with realistic observed data simulations, that lead to conclude that GRAVITY could be able to constrain the black holes inclination parameter.

قيم البحث

اقرأ أيضاً

45 - R. W. Goosmann 2007
We present modeling results for the reprocessed radiation expected from magnetic flares above AGN accretion disks. Relativistic corrections for the orbital motion of the flare and for the curved space-time in the vicinity of the black hole are taken into account. We investigate the local emission spectra, as seen in a frame co-orbiting with the disk, and the observed spectra at infinity. We investigate long-term flares at different orbital phases and short-term flares for various global parameters of the accreting black hole. Particular emphasis is put on the relation between the iron Kalpha line and the Compton hump as these two features can be simultaneously observed by the Suzaku satellite and later by Simbol-X.
We propose to use relative strengths of far-infrared fine structure lines from galaxies to characterise early phases of the inside-out quenching by massive black holes (BHs). The BH feedback is thought to quench star formation by evacuating the ambie nt gas. In order to quantify the feedback effect on the gas density in the galactic centres, we utilise the outputs of IllustrisTNG and Illustris simulations, which implement different BH feedback models. We devise a physical model of H$_{rm ~II}$ regions and compute the intensities of [O$_{rm ~III}$] $52$ and $88~{rm mu m}$ lines. The line intensity ratio is sensitive to the local electron density, and thus can be used to measure the strength and physical extent of the BH quenching. If the BH feedback abruptly operates and expel the gas when it grows to a certain mass, as modelled in IllustrisTNG, the low-density gas yields relatively weak [O$_{rm ~III}$] $52$ line with respect to $88~{rm mu m}$. In contrast, if the feedback strength and hence the local gas density are not strongly correlated with the BH mass, as in Illustris, the line ratio is not expected to vary significantly among galaxies with different evolutionary stages. We find these features are reproduced in the simulations. We also show that the line ratios are not sensitive to the aperture size for measurement, and thus observations do not need to resolve the galactic centres. We argue that the integrated line ratios can be used to capture the onset of the inside-out quenching by BHs.
The population of supermassive black holes (SMBHs) is composed by quiescent SMBHs, such as those seen in local galaxies including the Milky Ways, and active ones, resulting in quasars and active galactic nuclei (AGN). Outside our neighbourhood, all t he information we have on SMBHs is derived from quasars and AGN, giving us a partial view. We study the evolution of the SMBH population, total and active, by the continuity equation, backwards in time from z=0 to z=4. Type-1 and type-2 AGN are differentiated in the model on the basis of the Eddington ratio distribution, chosen on the basis of observational estimates. The duty cycle is obtained by matching the luminosity function of quasars, and the average radiative efficiency is the only free parameter in the model. For higher radiative efficiencies (>~0.07) a large fraction of the SMBH population, most of them quiescent, must already be in place by z=4. For lower radiative efficiencies (~0.05), the duty cycle increases with the redshift and the SMBH population evolves dramatically since z=4. The mass function of active SMBHs does not depend on the choice of the radiative efficiency or of the local SMBH mass function, but it is mainly determined by the quasar luminosity function, once the Eddington ratio distribution is fixed. Only a direct measurement of the total BHMF at redshifts z>~2 could break these degeneracies giving important constraints on the average radiative efficiency. Focusing on type-1 AGN, for which observational estimates of the mass function and Eddington ratio distribution exist at various redshift, models with lower radiative efficiencies reproduce better the high-mass end of the mass function at high-z, but they tend to over-predict it at low-z, and vice-versa for models with higher radiative efficiencies.
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows it s full powerful and clearness in the presence of supermassive black holes (SPMHs). We find the main galaxy and central black hole magnitudes: halo radius r_h , halo mass M_h, black hole mass M_BH, velocity dispersion, phase space density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The SMBH masses arise naturally in this framework. Our extensive numerical calculations and detailed analytic resolution show that with SMBHs, both WDM regimes: classical (Boltzmann dilute) and quantum (compact) do necessarily co-exist in any galaxy: from the smaller and compact galaxies to the largest ones. The transition from the quantum to the classical region occurs precisely at the same point r_A where the chemical potential vanishes. A novel halo structure with three regions shows up: A small quantum compact core of radius r_A around the SMBH, followed by a less compact region till the BH influence radius r_i, and then for r> r_i the known halo galaxy shows up with its astrophysical size. Three representative families of galaxy plus central SMBH solutions are found and analyzed:small, medium and large galaxies having SMBH masses of 10^5, 10^7 and 10^9 M_sun respectively. A minimum galaxy size and mass ~ 10^7 M_sun larger than the one without SMBH is found. Small galaxies in the range 10^4 M_sun < M_h < 10^7 M_sun cannot harbor central SMBHs. We find novel scaling M_BH - r_h - M_h relations. The galaxy equation of state is derived: The pressure P(r) takes huge values in the SMBH vecinity and then sharply decreases entering the classical region following a local perfect gas behaviour.(Abridged)
Decades after the first predictions of intermediate-mass black holes (IMBHs) in globular clusters (GCs) there is still no unambiguous observational evidence for their existence. The most promising signatures for IMBHs are found in the cores of GCs, w here the evidence now comes from the stellar velocity distribution, the surface density profile, and, for very deep observations, the mass-segregation profile near the cluster center. However, interpretation of the data, and, in particular, constraints on central IMBH masses, require the use of detailed cluster dynamical models. Here we present results from Monte Carlo cluster simulations of GCs that harbor IMBHs. As an example of application, we compare velocity dispersion, surface brightness and mass-segregation profiles with observations of the GC M10, and constrain the mass of a possible central IMBH in this cluster. We find that, although M10 does not seem to possess a cuspy surface density profile, the presence of an IMBH with a mass up to 0.75% of the total cluster mass, corresponding to about 600 Msun, cannot be excluded. This is also in agreement with the surface brightness profile, although we find it to be less constraining, as it is dominated by the light of giants, causing it to fluctuate significantly. We also find that the mass-segregation profile cannot be used to discriminate between models with and without IMBH. The reason is that M10 is not yet dynamically evolved enough for the quenching of mass segregation to take effect. Finally, detecting a velocity dispersion cusp in clusters with central densities as low as in M10 is extremely challenging, and has to rely on only 20-40 bright stars. It is only when stars with masses down to 0.3 Msun are included that the velocity cusp is sampled close enough to the IMBH for a significant increase above the core velocity dispersion to become detectable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا