ترغب بنشر مسار تعليمي؟ اضغط هنا

Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

153   0   0.0 ( 0 )
 نشر من قبل Igor Ryabtsev
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a star-like geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S_{1/2}->5P_{3/2}->6S_{1/2}->nP in Rb atoms have shown that compared to the one- and two-photon laser excitation this approach provides much narrower line width and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.



قيم البحث

اقرأ أيضاً

We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to t he cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.
We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, whilst the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.
We demonstrate the ability to excite atoms at well-defined, programmable locations in a magneto-optical trap, either to the continuum (ionisation), or to a Rydberg state. To this end, excitation laser light is shaped into arbitrary intensity patterns with a spatial light modulator. These optical patterns are sensitive to aberrations of the phase of the light field, occuring while traversing the optical beamline. These aberrations are characterised and corrected without observing the actual light field in the vacuum chamber.
Interaction between Rydberg atoms can significantly modify Rydberg excitation dynamics. Under a resonant driving field the Rydberg-Rydberg interaction in high-lying states can induce shifts in the atomic resonance such that a secondary Rydberg excita tion becomes unlikely leading to the Rydberg blockade effect. In a related effect, off-resonant coupling of light to Rydberg states of atoms contributes to the Rydberg anti-blockade effect where the Rydberg interaction creates a resonant condition that promotes a secondary excitation in a Rydberg atomic gas. Here, we study the light-matter interaction and dynamics of off-resonant two-photon excitations and include two- and three-atom Rydberg interactions and their effect on excited state dynamics in an ensemble of cold atoms. In an experimentally-motivated regime, we find the optimal physical parameters such as Rabi frequencies, two-photon detuning, and pump duration to achieve significant enhancement in the probability of generating doubly-excited collective atomic states. This results in large auto-correlation values due to the Rydberg anti-blockade effect and makes this system a potential candidate for a high-purity two-photon Fock state source.
We characterize the two-photon excitation of an ultracold gas of Rubidium atoms to Rydberg states analysing the induced atomic losses from an optical dipole trap. Extending the duration of the Rydberg excitation to several ms, the ground state atoms are continuously coupled to the formed positively charged plasma. In this regime we measure the $n$-dependence of the blockade effect and we characterise the interaction of the excited states and the ground state with the plasma. We also investigate the influence of the quasi-electrostatic trapping potential on the system, confirming the validity of the ponderomotive model for states with $20leq nleq 120$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا