ترغب بنشر مسار تعليمي؟ اضغط هنا

The merger history, AGN and dwarf galaxies of Hickson Compact Group 59

106   0   0.0 ( 0 )
 نشر من قبل Iraklis S. Konstantopoulos
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8e13 Msun), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at ~1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its ~10e40 erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.



قيم البحث

اقرأ أيضاً

We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candid ates found in a compact group of galaxies. We measure spheroid half-light radii in the range $0.7!lesssim! r_{rm eff}/{rm kpc}! lesssim! 1.5$ with luminosities of $-11.65!lesssim! M_U! lesssim! -9.42$ and $-12.79!lesssim! M_I! lesssim! -10.58$ mag, corresponding to a color range of $(U!-!I)_0!simeq!1.1!-!2.2$ mag and surface brightness levels of $mu_U!simeq!28.1,{rm mag/arcsec^2}$ and $mu_I!simeq!27.4,{rm mag/arcsec^2}$. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z$_odot$ metallicities we obtain stellar masses in the range $M_*|_{Z_odot} simeq 10^{5.7-6.3} M_{odot}$ and $M_*|_{0.02,Z_odot}!simeq!10^{6.3-8},M_{odot}$. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than $sim 2$ Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with $sim!2$ kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of $r_{rm eff}!simeq!46!-!63$ pc and magnitude M$_{U,0}=-7.42$ mag and $(U!-!I)_0!=!1.51$ mag, which is consistent with a nuclear stellar disc with a stellar mass in the range $10^{4.9-6.5},M_odot$.
72 - Dominik Bomans 2006
We observed 5 Hickson Compact Groups with the ESO/MPI 2.2m telescope and WFI to investigate the dwarf galaxy content and distribution in these galaxy groups. Our deep imaging and careful selection of the candidate galaxies revealed a rich population of mainly passively evolving dwarf galaxies, which is spatially much more extended than the originally defined Hickson Compact groups. The composite luminosity function of the 5 groups shows a bimodal structure with a very steep rise in the low luminosity regime. The faint end slope is close to the predictions of CDM theory for the slope of the Dark Matter halo mass function.
101 - Noah Brosch 2015
I present observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new 28-inch telescope at the Wise Observatory. This galaxy group was advertised to be non-interacting, or to be in a very early interaction stage, b ut this is not the case. The observations reported here were done using a luminance filter, essentially a very broad R filter, reaching a low surface brightness level of about 26 mag per square arcsec. Additional observations were obtained in a narrow spectral band approximately centered on the rest-frame H-alpha line from the group. Contrary to previous studies, my observations show that at least two of the major galaxies have had significant interactions in the past, although probably not between themselves. I report the discovery of a faint extended tail emerging from the brightest of the group galaxies, severe isophote twisting and possible outer shells around another galaxy, and map the HII regions in all the galaxies.
129 - T. X. Thuan , F. E. Bauer (2 , 3 2014
We present XMM-Newton and Chandra observations of two low-metallicity cometary blue compact dwarf (BCD) galaxies, Mrk 59 and Mrk 71. The first BCD, Mrk 59, contains two ultraluminous X-ray (ULX) sources, IXO 72 and IXO 73, both associated with bright massive stars and H II complexes, as well as one fainter extended source associated with a massive H II complex at the head of the cometary structure. The low-metallicity of Mrk 59 appears to be responsible for the presence of the two ULXs. IXO 72 has varied little over the last 10 yr, while IXO 73 has demonstrated a variability factor of ~4 over the same period. The second BCD, Mrk 71, contains two faint X-ray point sources and two faint extended sources. One point source is likely a background AGN, while the other appears to be coincident with a very luminous star and a compact H II region at the head of the cometary structure. The two faint extended sources are also associated with massive H II complexes. Although both BCDs have the same metallicity, the three sources in Mrk 71 have X-ray luminosities ~1-2 orders of magnitude fainter than those in Mrk 59. The age of the starburst may play a role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا