ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Particles in a Trap

46   0   0.0 ( 0 )
 نشر من قبل Sigurd Kohler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. S. Kohler




اسأل ChatGPT حول البحث

The Busch-formula relates the energy-spectrum of two point-like particles interacting in a 3-D isotropic Harmonic Oscillator trap to the free scattering phase-shifts of the particles. This formula is used to find an expression for the it shift rm in the spectrum from the unperturbed (non-interacting) spectrum rather than the spectrum itself. This shift is shown to be approximately $Delta=-delta(k)/pitimes dE$, where $dE$ is the spacing between unperturbed energy levels. The resulting difference from the Busch-formula is typically 1/2% except for the lowest energy-state and small scattering length when it is 3%. It goes to zero when the scattering length $rightarrow pm infty$. The energy shift $Delta$ is familiar from a relatedproblem, that of two particles in a spherical infinite square-well trap of radius $R$ in the limit $Rrightarrow infty$. The approximation ishowever as large as 30% for finite values of $R$, a situation quite different from the Harmonic Oscillator case. The square-well results for $Rrightarrow infty$ led to the use ofin-medium (effective) interactions in nuclear matter calculations that were $propto Delta$ and known as the it phase shift approximation rm.Our results indicate that the validity of this approximation depends on the trapitself, a problem already discussed by DeWitt more than 50 years ago for acubical vs spherical trap.

قيم البحث

اقرأ أيضاً

Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number $N$ of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation temperature $T_c$ in terms of a power series in $x_0=epsilon_0/k_BT_c$, where $epsilon_0$ denotes the zero-point energy of the trapping potential. This expression, which applies in cartesian, cylindrical and spherical power-law traps, is given analytically at infinite order. It is also given numerically for specific potential shapes as an expansion in powers of $x_0$ up to the second order. We show that, for a harmonic trap, the well known first order shift of the critical temperature $Delta T_c/T_c propto N^{-1/3}$ is inaccurate when $N leqslant 10^{5}$, the next order (proportional to $N^{-1/2}$) being significant. We also show that finite size effects on the condensation temperature cancel out in a cubic trapping potential, e.g. $V(mathbi{r}) propto r^3$. Finally, we show that in a generic power-law potential of higher order, e.g. $V(mathbi{r}) propto r^alpha$ with $alpha > 3$, the shift of the critical temperature becomes positive. This effect provides a large increase of $T_c$ for relatively small atom numbers. For instance, an increase of about +40% is expected with $10^4$ atoms in a $V(mathbi{r}) propto r^{12}$ trapping potential.
We outline a procedure for using matrix mechanics to compute energy eigenvalues and eigenstates for two and three interacting particles in a confining trap, in one dimension. Such calculations can bridge a gap in the undergraduate physics curriculum between single-particle and many-particle quantum systems, and can also provide a pathway from standard quantum mechanics course material to understanding current research on cold-atom systems. In particular we illustrate the notion of fermionization and how it occurs not only for the ground state in the presence of strong repulsive interactions, but also for excited states, in both the strongly attractive and strongly repulsive regimes.
Energy levels are investigated for two charged particles possessing an attractive, momentum-independent, zero-range interaction in a uniform magnetic field. A transcendental equation governs the spectrum, which is characterized by a collective Landau -level quantum number incorporating both center-of-mass and relative degrees of freedom. Results are obtained for a system of one charged and one neutral particle, with the interaction chosen to produce a bound state in vanishing magnetic field. Beyond deriving the weak-field expansion of the energy levels, we focus on non-perturbative aspects. In the strong-field limit, or equivalently for a system in the unitary limit, a single bound level with universal binding energy exists. By contrast, excited states are resonances that disappear into the continuum as the magnetic field is raised beyond critical values. A hyperbola is derived that approximates the number of bound levels as a function of the field strength remarkably well.
Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-st ate quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincare sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm.
We elucidate the fate of neighboring two and three-$alpha$ particles in cold neutron matter by focusing on an analogy between such $alpha$ systems and Fermi polarons realized in ultracold atoms. We describe in-medium excitation properties of an $alph a$ particle and neutron-mediated two- and three-$alpha$ interactions using theoretical approaches developed for studies of cold atomic systems. We numerically solve the few-body Schrodinger equation of $alpha$ particles within standard $alpha$ cluster models combined with in-medium properties of $alpha$ particles. We point out that the resultant two-$alpha$ ground state and three-$alpha$ first excited state, which correspond to $^8$Be and the Hoyle state, respectively, known as main components in the triple-$alpha$ reaction, can become bound states in such a many-neutron background although these states are unstable in vacuum. Our results suggest a significance of these in-medium cluster states not only in astrophysical environments such as core-collapsed supernova explosions and neutron star mergers but also in neutron-rich nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا