ﻻ يوجد ملخص باللغة العربية
Single photons produced by fundamentally dissimilar physical processes will in general not be indistinguishable. We show how photons produced from a quantum dot and by parametric down-conversion in a nonlinear crystal can be manipulated to be indistinguishable. The measured two-photon coalescence probability is 16%, and is limited by quantum-dot decoherence. Temporal filtering to the quantum dot coherence time and accounting for detector time response increases this to 61% while retaining 25% of the events. This technique can connect different elements in a scalable quantum network.
Storage and retrieval of parametric down-conversion (PDC) photons are demonstrated with electromagnetically induced transparency (EIT). Extreme frequency filtering is performed for THz order of broadband PDC light and the frequency bandwidth of the l
Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, bu
An important step for photonic quantum technologies is the demonstration of a quantum advantage through boson sampling. In order to prevent classical simulability of boson sampling, the photons need to be almost perfectly identical and almost without
We quantitatively investigate the non-classicality and non-locality of a whole new class of mixed disparate quantum and semiquantum photon sources at the quantum-classical boundary. The latter include photon added thermal and photon added coherent so
Heralding of single photon at 1550 nm from pump pulsed non degenerate spontaneous parametric downconversion is demonstrated. P(1) and P(2) of our source are 0.1871 and 2.4 x 10 ^-3 respectively. Triggering of our source is 2.16 x 10^5 trigger.s^-1. This source may be used in QKD system.