ﻻ يوجد ملخص باللغة العربية
We present the results of monitoring the Galactic black hole candidate GX 339-4 with the Monitor of All-sky X-ray Image (MAXI) / Gas Slit Camera (GSC) in the high/soft state during the outburst in 2010. All the spectra throughout the 8-month period are well reproduced with a model consisting of multi-color disk (MCD) emission and its Comptonization component, whose fraction is <= 25% in the total flux. In spite of the flux variability over a factor of 3, the innermost disk radius is constant at R_in = 61 +/- 2 km for the inclination angle of i = 46 deg and the distance of d=8 kpc. This R_in value is consistent with those of the past measurements with Tenma in the high/soft state. Assuming that the disk extends to the innermost stable circular orbit of a non-spinning black hole, we estimate the black hole mass to be M = 6.8 +/- 0.2 M_sun for i = 46 deg and d = 8 kpc, which is consistent with that estimated from the Suzaku observation of the previous low/hard state. Further combined with the mass function, we obtain the mass constraint of 4.3 M_sun < M < 13.3 M_sun for the allowed range of d = 6-15 kpc and i < 60 deg. We also discuss the spin parameter of the black hole in GX 339-4 by applying relativistic accretion disk models to the Swift/XRT data.
We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and th
We investigate systematically four outbursts of black hole system GX 339-4 observed by the Rossi X-ray Timing Explorer (RXTE) in both spectral and timing domains and find that these outbursts have some common properties although they experience diffe
We investigate variability of optical and near-infrared light curves of the X-ray binary GX 339-4 on a timescale of days. We use the data in four filters from six intervals corresponding to the soft state and from four intervals corresponding to the
Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of
Black hole X-ray binaries show signs of non-thermal emission in the optical/near-infrared range. We analyze the optical/near-infrared SMARTS data on GX339$-$4 over the 2002--2011 period. Using the soft state data, we estimate the interstellar extinct