ترغب بنشر مسار تعليمي؟ اضغط هنا

Minor merger-induced cold fronts in Abell 2142 and RXJ1720.1+2638

135   0   0.0 ( 0 )
 نشر من قبل Matt Owers
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matt S. Owers




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data re veal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~1000 km/s. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.
We investigate the origin and nature of the multiple sloshing cold fronts in the core of Abell 496 by direct comparison between observations and dedicated hydrodynamical simulations. Our simulations model a minor merger with a 4{times}10^13M{circ} su bcluster crossing A496 from the south-west to the north-north-east, passing the cluster core in the south-east at a pericentre distance 100 to a few 100 kpc about 0.6 to 0.8 Gyr ago. The gas sloshing triggered by the merger can reproduce almost all observed features, e.g. the characteristic spiral-like brightness residual distribution in the cluster centre and its asymmetry out to 500 kpc, also the positions of and contrasts across the cold fronts. If the subcluster passes close (100 kpc) to the cluster core, the resulting shear flows are strong enough to trigger Kelvin-Helmholtz instabilities that in projection resemble the peculiar kinks in the cold fronts of Abell 496. Finally, we show that sloshing does not lead to a significant modification of the global ICM profiles but a mild oscillation around the initial profiles.
Clumping and turbulence are expected to affect the matter accreted onto the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142 we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere et al. 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a nonthermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30% of the total pressure at the virial radius. The presence of the nonthermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a nonthermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile k_BT = P_e/n_e basing on a combination of the Sunyaev-Zeldovich (SZ) pressure P_e and of the X-ray electron density n_e does not allow to highlight the presence of nonthermal pressure support in the cluster outskirts.
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
We present results obtained with a new XMM-Newton observation of A2142, a famous textbook example of cluster with multiple cold fronts, which has been studied in detail with Chandra but whose large scale properties are presented here for the first ti me. We report the discovery of a a new cold front, the most distant one ever detected in a galaxy cluster, at about one Mpc from the center to the SE. Residual images, thermodynamics and metal abundance maps are qualitatively in agreement with predictions from numerical simulations of the sloshing phenomenon. However, the scales involved are much larger, similarly to what recently observed in the Perseus cluster. These results show that sloshing is a cluster-wide phenomenon, not confined in the cores, which extends well beyond the cooling region involving a large fraction of the ICM up to almost half of the virial radius. The absence of a cool core and a newly discovered giant radio halo in A2142, in spite of its relaxed X-ray morphology, suggest that large scale sloshing, or the intermediate merger which caused it, may trigger Mpc-scale radio emission and may lead to the disruption of the cluster cool core
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا