ترغب بنشر مسار تعليمي؟ اضغط هنا

A linear program for the finite block length converse of Polyanskiy-Poor-Verdu via non-signalling codes

116   0   0.0 ( 0 )
 نشر من قبل William Matthews
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William Matthews




اسأل ChatGPT حول البحث

Motivated by recent work on entanglement-assisted codes for sending messages over classical channels, the larger, easily characterised class of non-signalling codes is defined. Analysing the optimal performance of these codes yields an alternative proof of the finite block length converse of Polyanskiy, Poor and Verdu, and shows that they achieve this converse. This provides an explicit formulation of the converse as a linear program which has some useful features. For discrete memoryless channels, it is shown that non-signalling codes attain the channel capacity with zero error probability if and only if the dispersion of the channel is zero.


قيم البحث

اقرأ أيضاً

We derive one-shot upper bounds for quantum noisy channel codes. We do so by regarding a channel code as a bipartite operation with an encoder belonging to the sender and a decoder belonging to the receiver, and imposing constraints on the bipartite operation. We investigate the power of codes whose bipartite operation is non-signalling from Alice to Bob, positive-partial transpose (PPT) preserving, or both, and derive a simple semidefinite program for the achievable entanglement fidelity. Using the semidefinite program, we show that the non-signalling assisted quantum capacity for memoryless channels is equal to the entanglement-assisted capacity. We also relate our PPT-preserving codes and the PPT-preserving entanglement distillation protocols studied by Rains. Applying these results to a concrete example, the 3-dimensional Werner-Holevo channel, we find that codes that are non-signalling and PPT-preserving can be strictly less powerful than codes satisfying either one of the constraints, and therefore provide a tighter bound for unassisted codes. Furthermore, PPT-preserving non-signalling codes can send one qubit perfectly over two uses of the channel, which has no quantum capacity. We discuss whether this can be interpreted as a form of superactivation of quantum capacity.
We derive upper bounds on the rate of transmission of classical information over quantum channels by block codes with a given blocklength and error probability, for both entanglement-assisted and unassisted codes, in terms of a unifying framework of quantum hypothesis testing with restricted measurements. Our bounds do not depend on any special property of the channel (such as memorylessness) and generalise both a classical converse of Polyanskiy, Poor, and Verd{u} as well as a quantum converse of Renner and Wang, and have a number of desirable properties. In particular our bound on entanglement-assisted codes is a semidefinite program and for memoryless channels its large blocklength limit is the well known formula for entanglement-assisted capacity due to Bennett, Shor, Smolin and Thapliyal.
SC-LDPC codes with sub-block locality can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus providing fast access to the coded information. The same code can also be decoded globally using the entire c ode block, for increased data reliability. In this paper, we pursue the analysis and design of such codes from both finite-length and asymptotic lenses. This mixed approach has rarely been applied in designing SC codes, but it is beneficial for optimizing code graphs for local and global performance simultaneously. Our proposed framework consists of two steps: 1) designing the local code for both threshold and cycle counts, and 2) designing the coupling of local codes for best cycle count in the global design.
Spatially-coupled (SC) LDPC codes have recently emerged as an excellent choice for error correction in modern data storage and communication systems due to their outstanding performance. It has long been known that irregular graph codes offer perform ance advantage over their regular counterparts. In this paper, we present a novel combinatorial framework for designing finite-length irregular SC LDPC codes. Our irregular SC codes have the desirable properties of regular SC codes thanks to their structure while offering significant performance benefits that come with the node degree irregularity. Coding constructions proposed in this work contribute to the existing portfolio of finite-length graph code designs.
Spatially-coupled (SC) codes are a family of graph-based codes that have attracted significant attention thanks to their capacity approaching performance and low decoding latency. An SC code is constructed by partitioning an underlying block code int o a number of components and coupling their copies together. In this paper, we first introduce a general approach for the enumeration of detrimental combinatorial objects in the graph of finite-length SC codes. Our approach is general in the sense that it effectively works for SC codes with various column weights and memories. Next, we present a two-stage framework for the construction of high-performance binary SC codes optimized for additive white Gaussian noise channel; we aim at minimizing the number of detrimental combinatorial objects in the error floor regime. In the first stage, we deploy a novel partitioning scheme, called the optimal overlap partitioning, to produce optimal partitioning corresponding to the smallest number of detrimental objects. In the second stage, we apply a new circulant power optimizer to further reduce the number of detrimental objects in the lifted graph. An SC code constructed by our new framework has nearly 5 orders of magnitudes error floor performance improvement compared to the uncoupled setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا