ترغب بنشر مسار تعليمي؟ اضغط هنا

Gap states in insulating LaMnPO$_{1-x}$F$_{x}$ (x = 0 - 0.3)

67   0   0.0 ( 0 )
 نشر من قبل Jack Simonson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared transmission and electrical resistivity measurements reveal that single crystals of LaMnPO$_{1-x}$F$_{x}$ (x $leq$ 0.28) are insulating. The optical gap obtained from transmission measurements is nearly unaffected by doping, decreasing only slightly from 1.3 eV in undoped LaMnPO to 1.1 eV for x = 0.04. The activation gaps obtained from electrical resistivity measurements are smaller by at least an order of magnitude, signalling the presence of states within the optical gap. At low temperatures, the resistivity is described well by variable range hopping conduction between these localized gap states. Analysis of the hopping conduction suggests that the gap states become slightly more delocalized with fluorine content, although metallic conduction is not observed even for fluorine concentrations as large as x = 0.28.

قيم البحث

اقرأ أيضاً

We report thermoelectric properties of Ir$_{1-x}$Rh$_x$Te$_2$ ($0 leqslant x leqslant 0.3$) alloy series where superconductivity at low temperatures emerges as the high-temperature structural transition ($T_s$) is suppressed. The isovalent ionic subs titution of Rh into Ir has different effects on physical properties when compared to the anionic substitution of Se into Te, in which the structural transition is more stable with Se substitution. Rh substitution results in a slight reduction of lattice parameters and in an increase of number of carriers per unit cell. Weak-coupled BCS superconductivity in Ir$_{0.8}$Rh$_{0.2}$Te$_2$ that emerges at low temperature ($T_c^{zero}$ = 2.45 K) is most likely driven by electron-phonon coupling rather than dimer fluctuations mediated pairing.
79 - L. Jiao , Z. F. Weng , J. Z. Liu 2014
We measure the magnetic penetration depth $Deltalambda(T)$ for NdO$_{1-x}$F$_{x}$BiS$_{2}$ ($x$ = 0.3 and 0.5) using the tunnel diode oscillator technique. The $Deltalambda(T)$ shows an upturn in the low-temperature limit which is attributed to the p aramagnetism of Nd ions. After subtracting the paramagnetic contributions, the penetration depth $Deltalambda(T)$ follows exponential-type temperature dependence at $Tll T_c$. Both $Deltalambda(T)$ and the corresponding superfluid density $rho_s(T)$ can be described by the BCS model with an energy gap of $Delta(0)$ $approx$ 2.0 $k_BT_c$ for both $x$ = 0.3 and 0.5, suggesting strong-coupling BCS superconductivity in the presence of localized moments for NdO$_{1-x}$F$_{x}$BiS$_{2}$.
We report new zero-field muon spin relaxation and neutron spin echo measurements in ferromagnetic (FM) (La,Ca)MnO3 which taken together suggest two spatially separated regions in close proximity possessing very different Mn-ion spin dynamics. One reg ion corresponds to an extended cluster which displays critical slowing down near Tc and an increasing volume fraction below Tc. The second region possesses more slowly fluctuating spins and a decreasing volume fraction below Tc. These data are discussed in terms of the growth of small polarons into overlapping regions of correlated spins below Tc, resulting in a microscopically inhomogeneous FM transition.
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favo rs different superexchange pathways, and leads to the formation of alternative magnetic structures depending on whether $B$ is $d^{10}$ or $d^0$. Furthermore, the competition generated by introducing mixtures of $d^{10}$ and $d^0$ cations can drive the material into the realms of exotic quantum magnetism. Here, a W$^{6+}$ $d^0$ dopant was introduced to a $d^{10}$ hexagonal perovskite Ba$_2$CuTeO$_6$, which possesses a spin ladder geometry of Cu$^{2+}$ cations, creating a Ba$_2$CuTe$_{1-x}$W$_x$O$_6$ solid solution ($x$ = 0 - 0.3). Neutron and synchrotron X-ray diffraction show that W$^{6+}$ is almost exclusively substituted for Te$^{6+}$ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. This means the intra-ladder interactions are selectively tuned by the $d^0$ cations. Bulk magnetic measurements suggest this suppresses magnetic ordering in a similar manner to that observed for the spin-liquid like material Sr$_2$CuTe$_{1-x}$W$_x$O$_6$. This further demonstrates the utility of $d^{10}$ and $d^0$ dopants as a tool for tuning magnetic ground states in a wide range of perovskites and perovskite-derived structures.
We have performed the powder neutron diffraction measurements on the solid solutions of SrRu_{1-x}Mn_xO_3, and found that the itinerant ferromagnetic order observed in pure SrRuO_3 changes into the C-type antiferromagnetic (AF) order with nearly loca lized d electrons in the intermediate Mn concentration between x=0.4 and 0.6. With increasing x, the AF moment is strongly enhanced from 1.1 mB (x=0.4) to 2.6 mB (x=0.6), which is accompanied by the elongation of the tetragonal c/a ratio. These results suggest that the substitution of Mn for Ru suppresses the itinerant character of the d electrons, and induces the superexchange interaction through the compression in the c plane. We have also found that the magnetic and transport properties observed in our tetragonal samples are quite similar to those of recently reported orthorhombic ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا