ترغب بنشر مسار تعليمي؟ اضغط هنا

HerMES: point source catalogues from deep Herschel-SPIRE observations

73   0   0.0 ( 0 )
 نشر من قبل Anthony Smith
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the generation of single-band point source catalogues from submillimetre Herschel-SPIRE observations taken as part of the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey (HerMES). Flux densities are found by means of peak-finding and the fitting of a Gaussian point-response function. With highly-confused images, careful checks must be made on the completeness and flux density accuracy of the detected sources. This is done by injecting artificial sources into the images and analysing the resulting catalogues. Measured flux densities at which 50 per cent of injected sources result in good detections at (250, 350, 500) {mu}m range from (11.6, 13.2, 13.1) mJy to (25.7, 27.1, 35.8) mJy, depending on the depth of the observation (where a `good detection is taken to be one with positional offset less than one full-width half-maximum of the point-response function, and with the measured flux density within a factor of 2 of the flux density of the injected source). This paper acts as a reference for the 2010 July HerMES public data release.

قيم البحث

اقرأ أيضاً

82 - L. Wang , M. Viero , C. Clarke 2013
The Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest Guaranteed Time Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ~380 deg^2 . In this paper, we present deep point source catalogues extracted from Herschel-SPIRE observations of all HerMES fields, except for the later addition of the 270 deg^2 HeLMS field. These catalogues constitute the second Data Release (DR2) made in October 2013. A subset of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by May 1, 2010 (covering ~ 74 deg^2) were released earlier in the first extensive Data Release (DR1) in March 2012. Two different methods are used to generate the point source catalogues, the SUSSEXtractor (SXT) point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, StarFinder (SF), and a De-blended SPIRE Photometry (DESPHOT) algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterise basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500, 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM website (http://hedam.oamp.fr/herMES).
We present first results of a study of the submillimetre (rest frame far-infrared) properties of z~3 Lyman Break Galaxies (LBGs) and their lower-redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the G reat Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 microns yields a statistically significant submm detection with mean flux <S_{250}>= 5.9+/-1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submillimetre wavelengths. In comparison, the Spitzer 24 microns detected BX/BM galaxies appear fainter with a stacked value of <S_{250}> = 2.7 +/-0.8 mJy. By fitting the Spectral Energy Distributions (SEDs) we derive median infrared luminosities, L_{IR}, of 2.8x10^{12} Lsun and 1.5x10^{11} Lsun for z~3 LBGs and BX/BMs, respectively. We find that $L_{IR} estimates derived from present measurements are in good agreement with those based on UV data for z~2 BX/BM galaxies, unlike the case for z~3 infrared luminous LBGs where the UV underestimates the true $L_{IR}. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z ~3 LBGs and z~2 BX/BMs may also play a significant role.
We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 3 8 high-$z$ candidates. Follow-up of the first 5 of these sources confirms that this method is efficient at selecting high-$z$ DSFGs, with 4/5 at $z=4.3$ to $6.3$ (and the remaining source at $z=3.4$), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 $mu m$) and in single-band surveys, shows that our method is much more efficient at selecting high-$z$ DSFGs, in the sense that a much larger fraction are at $z>3$. Correcting for the selection completeness and purity, we find that the number of bright ($S_{500,mu m} ge 30$ mJy), red Herschel sources is $3.3 pm 0.8$ deg$^{-2}$. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-$z$ DSFGs is similar to that at $zsim2$, rest-frame UV based studies may be missing a significant component of the star formation density at $z=4$ to $6$, even after correction for extinction.
Dusty, star forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-SPIRE images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bul k lies below the classical confusion limit. We analyze three fields from the HerMES programme in all three SPIRE bands (250, 350, and 500 microns); parameterized galaxy number count models are derived to a depth of ~2 mJy/beam, approximately 4 times the depth of previous analyses at these wavelengths, using a P(D) (probability of deflection) approach for comparison to theoretical number count models. Our fits account for 64, 60, and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number counts models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam.
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5-sigma at 250, 350 and 500 mu in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (~ 56 %) are well fitted with the templates used to fit IRAS, ISO and Spitzer sources, for about half the galaxies two new templates are required: quiescent (cirrus) models with colder (10-20 K) dust, and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 mu data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 mu data. Herschel galaxies detected at 500 mu tend to be those with the very highest dust masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا