ﻻ يوجد ملخص باللغة العربية
We have measured the thermal conductivity of the iron pnictide superconductor LaFePO down to temperatures as low as T=60mK and in magnetic fields up to 5 T. The data shows a large residual contribution that is linear in temperature, consistent with the presence of low energy electronic quasiparticles. We interpret the magnitude of the linear term, as well as the field and temperature dependence of thermal transport in several pairing scenarios. The presence of an unusual supralinear temperature dependence of the electronic thermal conductivity in zero magnetic field, and a high scattering rate with minimal Tc suppression argues for a sign-changing nodal s+/- state.
The thermal conductivity of iron-based superconductor CsFe$_2$As$_2$ single crystal ($T_c =$ 1.81 K) was measured down to 50 mK. A significant residual linear term $kappa_0/T$ = 1.27 mW K$^{-2}$ cm$^{-1}$ is observed in zero magnetic field, which is
We present the first infrared and optical study in the normal state of ab-plane oriented single crystals of the iron-oxypnictide superconductor LaFePO. We find that this material is a low carrier density metal with a moderate level of correlations an
Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length $xi$ from the anomalous softening of
The specific heat $C(T)$ of new iron-based high-$T_c$ superconductor SmO$_{1-x}$F$_x$FeAs ($0 leq x leq 0.2$) was systematically studied. For undoped $x$ = 0 sample, a specific heat jump was observed at 130 K. This is attributed to the structural or
The low-temperature specific heat of a superconductor Mo3Sb7 with T_c = 2.25 (0.05) K has been measured in magnetic fields up to 5 T. In the normal state, the electronic specific heat coefficient gamma_n, and the Debye temperature Theta_D are found t