ترغب بنشر مسار تعليمي؟ اضغط هنا

The Unified Method: III Non-Linearizable Problems on the Interval

66   0   0.0 ( 0 )
 نشر من قبل Jonatan Lenells
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Boundary value problems for integrable nonlinear evolution PDEs formulated on the finite interval can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex $k$-plane (the Fourier plane), which has a jump matrix with explicit $(x,t)$-dependence involving six scalar functions of $k$, called spectral functions. Two of these functions depend on the initial data, whereas the other four depend on all boundary values. The most difficult step of the new method is the characterization of the latter four spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data. We present two different characterizations of this problem. One is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large $k$ asymptotics of the eigenfunctions defining the relevant spectral functions. The other is based on the analysis of the global relation and on the introduction of the so-called Gelfand-Levitan-Marchenko representations of the eigenfunctions defining the relevant spectral functions. We also show that these two different characterizations are equivalent and that in the limit when the length of the interval tends to infinity, the relevant formulas reduce to the analogous formulas obtained recently for the case of boundary value problems formulated on the half-line.

قيم البحث

اقرأ أيضاً

71 - A. S. Fokas , J. Lenells 2011
Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to th is particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex $k$-plane (the Fourier plane), which has a jump matrix with explicit $(x,t)$-dependence involving four scalar functions of $k$, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large $k$ asymptotics of the eigenfunctions defining the relevant spectral functions.
89 - J. Lenells , A. S. Fokas 2020
By employing a novel generalization of the inverse scattering transform method known as the unified transform or Fokas method, it can be shown that the solution of certain physically significant boundary value problems for the elliptic sine-Gordon eq uation, as well as for the elliptic version of the Ernst equation, can be expressed in terms of the solution of appropriate $2 times 2$-matrix Riemann--Hilbert (RH) problems. These RH problems are defined in terms of certain functions, called spectral functions, which involve the given boundary conditions, but also unknown boundary values. For arbitrary boundary conditions, the determination of these unknown boundary values requires the analysis of a nonlinear Fredholm integral equation. However, there exist particular boundary conditions, called linearizable, for which it is possible to bypass this nonlinear step and to characterize the spectral functions directly in terms of the given boundary conditions. Here, we review the implementation of this effective procedure for the following linearizable boundary value problems: (a) the elliptic sine-Gordon equation in a semi-strip with zero Dirichlet boundary values on the unbounded sides and with constant Dirichlet boundary value on the bounded side; (b) the elliptic Ernst equation with boundary conditions corresponding to a uniformly rotating disk of dust; (c) the elliptic Ernst equation with boundary conditions corresponding to a disk rotating uniformly around a central black hole; (d) the elliptic Ernst equation with vanishing Neumann boundary values on a rotating disk.
70 - J. Lenells , A. S. Fokas 2011
Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to th is particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex $k$-plane (the Fourier plane), which has a jump matrix with explicit $(x,t)$-dependence involving four scalar functions of $k$, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we first present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation and on the introduction of the so-called Gelfand-Levitan-Marchenko representations of the eigenfunctions defining the spectral functions. We then concentrate on the physically significant case of $t$-periodic Dirichlet boundary data. After presenting certain heuristic arguments which suggest that the Neumann boundary values become periodic as $ttoinfty$, we show that for the case of the NLS with a sine-wave as Dirichlet data, the asymptotics of the Neumann boundary values can be computed explicitly at least up to third order in a perturbative expansion and indeed at least up to this order are asymptotically periodic.
The unified transform method (UTM) provides a novel approach to the analysis of initial-boundary value problems for linear as well as for a particular class of nonlinear partial differential equations called integrable. If the latter equations are fo rmulated in two dimensions (either one space and one time, or two space dimensions), the UTM expresses the solution in terms of a matrix Riemann-Hilbert (RH) problem with explicit dependence on the independent variables. For nonlinear integrable evolution equations, such as the celebrated nonlinear Schrodinger (NLS) equation, the associated jump matrices are computed in terms of the initial conditions and all boundary values. The unknown boundary values are characterized in terms of the initial datum and the given boundary conditions via the analysis of the so-called global relation. In general, this analysis involves the solution of certain nonlinear equations. In certain cases, called linearizable, it is possible to bypass this nonlinear step. In these cases, the UTM solves the given initial-boundary value problem with the same level of efficiency as the well-known inverse scattering transform solves the initial value problem on the infinite line. We show here that the initial-boundary value problem on a finite interval with $x$-periodic boundary conditions (which can alternatively be viewed as the initial value problem on a circle), belongs to the linearizable class. Indeed, by employing certain transformations of the associated RH problem and by using the global relation, the relevant jump matrices can be expressed explicitly in terms of the so-called scattering data, which are computed in terms of the initial datum. Details are given for NLS, but similar considerations are valid for other well-known integrable evolution equations, including the Korteweg-de Vries (KdV) and modified KdV equations.
We study the large time behaviour of the solution of linear dispersive partial differential equations posed on a finite interval, when at least one of the prescribed boundary conditions is time periodic. We use the Q equation approach, pioneered in F okas & Lenells 2012 and applied to linear problems on the half-line in Fokas & van der Weele 2021, to characterise necessary conditions for the solution of such problem to be periodic, at least in an asymptotic sense. We then fully describe the periodicity properties of the solution in three important illustrative examples, recovering known results for the second-order cases and establishing new results for the third order case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا