ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the orbital period of the ultraluminous X-ray source NGC 1313 X-2

432   0   0.0 ( 0 )
 نشر من قبل Luca Zampieri
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed the longest phase-connected photometric dataset available for NGC 1313 X-2, looking for the ~6 day modulation reported by Liu et al. (2009). The folded B band light curve shows a 6 day periodicity with a significance slightly larger than 3 sigma. The low statistical significance of this modulation, along with the lack of detection in the V band, make its identification uncertain.



قيم البحث

اقرأ أيضاً

We report the detection of weak pulsations from the archetypal ultraluminous X-ray source (ULX) NGC 1313 X-2. Acceleration searches reveal sinusoidal pulsations in segments of two out of six new deep observations of this object, with a period of $sim $ 1.5 s and a pulsed fraction of $sim$ 5%. We use Monte Carlo simulations to demonstrate that the individual detections are unlikely to originate in false Poisson noise detections given their very close frequencies; their strong similarity to other pulsations detected from ULXs also argues they are real. The presence of a large bubble nebula surrounding NGC 1313 X-2 implies an age of order 1 Myr for the accreting phase of the ULX, which implies that the neutron stars magnetic field has not been suppressed over time by accreted material, nor has the neutron star collapsed into a black hole, despite an average energy output into the nebula two orders of magnitude above Eddington. This argues that most of the accreted material has been expelled over the lifetime of the ULX, favouring physical models including strong winds and/or jets for neutron star ULXs.
107 - E. Kara , C. Pinto , D.J. Walton 2019
Ultraluminous X-ray Sources (ULXs) provide a unique opportunities to probe the geometry and energetics of super-Eddington accretion. The radiative processes involved in super-Eddington accretion are not well understood, and so studying correlated var iability between different energy bands can provide insights into the causal connection between different emitting regions. We present a spectral-timing analysis of NGC 1313 X-1 from a recent XMM-Newton campaign. The spectra can be decomposed into two thermal-like components, the hotter of which may originate from the inner accretion disc, and the cooler from an optically thick outflow. We find correlated variability between hard (2-10 keV) and soft (0.3-2 keV) bands on kilosecond timescales, and find a soft lag of ~150 seconds. The covariance spectrum suggests that emission contributing to the lags is largely associated with the hotter of the two thermal-like components, likely originating from the inner accretion flow. This is only the third ULX to exhibit soft lags. The lags range over three orders of magnitude in amplitude, but all three are ~5 to ~20 percent of the corresponding characteristic variability timescales. If these soft lags can be understood in the context of a unified picture of ULXs, then lag timescales may provide constraints on the density and extent of radiatively-driven outflows.
367 - C. Pinto , D. J. Walton , E. Kara 2019
Most ultraluminous X-ray sources (ULXs) are thought to be powered by neutron stars and black holes accreting beyond the Eddington limit. If the compact object is a black hole or a neutron star with a magnetic field $lesssim10^{12}$ G, the accretion d isc is expected to thicken and launch powerful winds driven by radiation pressure. Evidence of such winds has been found in ULXs through the high-resolution spectrometers onboard XMM-Newton, but several unknowns remain, such as the geometry and launching mechanism of these winds. In order to better understand ULX winds and their link to the accretion regime, we have undertaken a major campaign with XMM-Newton to study the ULX NGC 1313 X-1, which is known to exhibit strong emission and absorption features from a mildly-relativistic wind. The new observations show clear changes in the wind with a significantly weakened fast component (0.2c) and the rise of a new wind phase which is cooler and slower (0.06-0.08c). We also detect for the first time variability in the emission lines which indicates an origin within the accretion disc or in the wind. We describe the variability of the wind in the framework of variable super-Eddington accretion rate and discuss a possible geometry for the accretion disc.
We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources (ULX) NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 ke V, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like black body component at ~0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.
106 - A. Robba , C. Pinto , D. J. Walton 2021
It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by recent discovery of X-ray pulsations and relativistic winds. This work presents a follow up study of the sp ectral evolution over two decades of the pulsing ULX NGC 1313 X-2, in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. We have performed a spectral analysis over the canonical 0.3-10 keV energy band of all the high signal-to-noise XMM-Newton observations, and we have tested a number of different spectral models, which should approximate super-Eddington accretion discs. The baseline model consists of two thermal blackbody components with different temperatures plus an exponential cutoff powerlaw. In particular, the hotter and brighter thermal component describes the emission from the super-Eddington inner disc and the cutoff powerlaw the contribution from the accretion column of the neutron star. Instead, the cooler component describes the emission from the outer region of the disc close to the spherisation radius and the wind. The luminosity-temperature relation for the cool component follows a negative trend, which is not consistent with L$propto$T$^4$, as expected from a sub-Eddington thin disc of Shakura-Sunayev, nor with L$propto$T$^2$, as expected for advection-dominated disc, but would rather agree with a wind-dominated X-ray emitting region. Instead, the (L,T) relation for the hotter component is somewhere in between the first two theoretical scenarios. Our findings agree with the super-Eddington scenario and provide further detail on the disc structure. The source spectral evolution is qualitatively similar to that seen in NGC1313 X-1 and HolmbergIX X-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا