ﻻ يوجد ملخص باللغة العربية
We introduce a contrarian opinion (CO) model in which a fraction p of contrarians within a group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial stage, stable clusters of two opinions, A and B exist. Then we introduce contrarians which hold a strong B opinion into the opinion A group. Through their interactions, the contrarians are able to decrease the size of the largest A opinion cluster, and even destroy it. We see this kind of method in operation, e.g when companies send free new products to potential customers in order to convince them to adopt the product and influence others. We study the CO model, using two different strategies, on both ER and scale-free networks. In strategy I, the contrarians are positioned at random. In strategy II, the contrarians are chosen to be the highest degrees nodes. We find that for both strategies the size of the largest A cluster decreases to zero as p increases as in a phase transition. At a critical threshold value p_c the system undergoes a second-order phase transition that belongs to the same universality class of mean field percolation. We find that even for an ER type model, where the degrees of the nodes are not so distinct, strategy II is significantly more effctive in reducing the size of the largest A opinion cluster and, at very small values of p, the largest A opinion cluster is destroyed.
Recent studies have shown that a system composed from several randomly interdependent networks is extremely vulnerable to random failure. However, real interdependent networks are usually not randomly interdependent, rather a pair of dependent nodes
A theory of additive Markov chains with long-range memory is used for description of correlation properties of coarse-grained literary texts. The complex structure of the correlations in texts is revealed. Antipersistent correlations at small distanc
Recent empirical observations suggest a heterogeneous nature of human activities. The heavy-tailed inter-event time distribution at population level is well accepted, while whether the individual acts in a heterogeneous way is still under debate. Mot
In J. Shao et al., PRL 103, 108701 (2009) the authors claim that a model with majority rule coarsening exhibits in d=2 a percolation transition in the universality class of invasion percolation with trapping. In the present comment we give compelling
We discuss the problem of extending data mining approaches to cases in which data points arise in the form of individual graphs. Being able to find the intrinsic low-dimensionality in ensembles of graphs can be useful in a variety of modeling context