ﻻ يوجد ملخص باللغة العربية
We use factorisations of the local isometry groups arising in 3d gravity for Lorentzian and Euclidean signatures and any value of the cosmological constant to construct associated bicrossproduct quantum groups via semidualisation. In this way we obtain quantum doubles of the Lorentz and rotation groups in 3d, as well as kappa-Poincare algebras whose associated r-matrices have spacelike, timelike and lightlike deformation parameters. We confirm and elaborate the interpretation of semiduality proposed in [13] as the exchange of the cosmological length scale and the Planck mass in the context of 3d quantum gravity. In particular, semiduality gives a simple understanding of why the quantum double of the Lorentz group and the kappa-Poincare algebra with spacelike deformation parameter are both associated to 3d gravity with vanishing cosmological constant, while the kappa-Poincare algebra with a timelike deformation parameter can only be associated to 3d gravity if one takes the Planck mass to be imaginary.
A solution of the old problem raised by Tolman, Ehrenfest, Podolsky and Wheeler, concerning the lack of attraction of two light pencils moving parallel, is proposed, considering that the light can be source of nonlinear gravitational waves correspond
We study the entropy of the black hole with torsion using the covariant form of the partition function. The regularization of infinities appearing in the semiclassical calculation is shown to be consistent with the grand canonical boundary conditions
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newtons constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - pass
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
We present a new regularisation of Euclidean Einstein gravity in terms of (sequences of) graphs. In particular, we define a discrete Einstein-Hilbert action that converges to its manifold counterpart on sufficiently dense random geometric graphs (mor