ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction of a Laser with a Qubit in Thermal Motion and its Application to Robust and Efficient Readout

44   0   0.0 ( 0 )
 نشر من قبل Max Hettrich
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed theoretical and experimental study on the optical control of a trapped-ion qubit subject to thermally induced fluctuations of the Rabi frequency. The coupling fluctuations are caused by thermal excitation on three harmonic oscillator modes. We develop an effective Maxwell-Boltzmann theory which leads to a replacement of several quantized oscillator modes by an effective continuous probability distribution function for the Rabi frequency. The model is experimentally verified for driving the quadrupole transition with resonant square pulses. This allows for the determination of the ion temperature with an accuracy of better than 2% of the temperature pertaining to the Doppler cooling limit TD over a range from 0.5TD to 5TD. The theory is then applied successfully to model experimental data for rapid adiabatic passage (RAP) pulses. We apply the model and the obtained experimental parameters to elu- cidate the robustness and efficiency of the RAP process by means of numerical simulations.

قيم البحث

اقرأ أيضاً

341 - F. Lecocq , F. Quinlan , K. Cicak 2020
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that conne ct room temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the possible size of a processor to a few thousand qubits. Here we introduce a photonic link employing an optical fiber to guide modulated laser light from room temperature to a cryogenic photodetector, capable of delivering shot-noise limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fiber enables efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.
The parametric phase-locked oscillator (PPLO), also known as a parametron, is a resonant circuit in which one of the reactances is periodically modulated. It can detect, amplify, and store binary digital signals in the form of two distinct phases of self-oscillation. Indeed, digital computers using PPLOs based on a magnetic ferrite ring or a varactor diode as its fundamental logic element were successfully operated in 1950s and 1960s. More recently, basic bit operations have been demonstrated in an electromechanical resonator, and an Ising machine based on optical PPLOs has been proposed. Here, using a PPLO realized with Josephson-junction circuitry, we demonstrate the demodulation of a microwave signal digitally modulated by binary phase-shift keying. Moreover, we apply this demodulation capability to the dispersive readout of a superconducting qubit. This readout scheme enables a fast and latching-type readout, yet requires only a small number of readout photons in the resonator to which the qubit is coupled, thus featuring the combined advantages of several disparate schemes. We have achieved high-fidelity, single-shot, and non-destructive qubit readout with Rabi-oscillation contrast exceeding 90%, limited primarily by the qubits energy relaxation.
We study the dispersive readout of a qubit in the ultimate limit of a single-photon probe. The use of a single-photon probe avoids the errors due to nonorthogonality of coherent states. A photodetector is used in the scheme we consider. The dynamics of the system is studied using the Heisenberg-Langevin equations. We treat the counter-rotating terms in the Hamiltonian perturbatively, which leads to the Bloch-Siegert shift in the resonator frequency. It is shown how this can improve the readout. The theory of photon transport through the qubit and the resonator it couples to is provided while taking the effect of the counter-rotating terms into account. To calculate the readout contrast, we use two approaches. The first one neglects the qubit relaxation and allows us to derive a compact expression for the contrast. Also, we obtain simple estimates for the system parameters to maximize the contrast. The second approach accounts for the qubit relaxation, which allows us to further improve the contrast. We demonstrate that for a readout time of 1$mu$s, a contrast of more than 75% can be achieved for an ideal detector and single-photon source.
Measurement-based feedback control is central in quantum computing and precise quantum control. Here we realize a fast and flexible field-programmable-gate-array-based feedback control in a superconducting Xmon qubit system. The latency of room-tempe rature electronics is custom optimized to be as short as 140 ns. Projective measurement of a signal qubit produces a feedback tag to actuate a conditional pulse gate to the qubit. In a feed-forward process, the measurement-based feedback tag is brought to a different target qubit for a conditional control. In a two-qubit experiment, the feedback and feed-forward controls are simultaneously actuated in consecutive steps. A quantum number is then generated by the signal qubit, and a random walk of the target qubit is correspondingly triggered and realized on the Bloch sphere. Our experiment provides a conceptually simple and intuitive benchmark for the feedback control in a multi-qubit system. The feedback system can be further scaled up for more complex feedback control experiments.
Using a circuit QED device, we demonstrate a simple qubit measurement pulse shape that yields fast ring-up and ring-down of the readout resonator regardless of the qubit state. The pulse differs from a square pulse only by the inclusion of additional constant-amplitude segments designed to effect a rapid transition from one steady-state population to another. Using a Ramsey experiment performed shortly after the measurement pulse to quantify the residual population, we find that compared to a square pulse followed by a delay, this pulse shape reduces the timescale for cavity ring-down by more than twice the cavity time constant. At low drive powers, this performance is achieved using pulse parameters calculated from a linear cavity model; at higher powers, empirical optimization of the pulse parameters leads to similar performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا