ﻻ يوجد ملخص باللغة العربية
We propose a realization of the one-dimensional random dimer model and certain N-leg generalizations using cold atoms in an optical lattice. We show that these models exhibit multiple delocalization energies that depend strongly on the symmetry properties of the corresponding Hamiltonian and we provide analytical and numerical results for the localization length as a function of energy. We demonstrate that the N-leg systems possess similarities with their 1D ancestors but are demonstrably distinct. The existence of critical delocalization energies leads to dips in the momentum distribution which serve as a clear signal of the localization-delocalization transition. These momentum distributions are different for models with different group symmetries and are identical for those with the same symmetry.
Recently, the topics of many-body localization (MBL) and one-dimensional strongly interacting few-body systems have received a lot of interest. These two topics have been largely developed separately. However, the generality of the latter as far as e
Anderson localization (AL) is a ubiquitous interference phenomenon in which waves fail to propagate in a disordered medium. We observe three-dimensional AL of noninteracting ultracold matter by allowing a spin-polarized atomic Fermi gas to expand int
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appr
Disorder can profoundly affect the transport properties of a wide range of quantum materials. Presently, there is significant disagreement regarding the effect of disorder on transport in the disordered Bose-Hubbard (DBH) model, which is the paradigm
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson loca