ﻻ يوجد ملخص باللغة العربية
Resonant inelastic x-ray scattering (RIXS) is a spectroscopic technique which has been widely used to study various elementary excitations in correlated and other condensed matter systems. For strongly correlated materials, besides boosting the overall signal the dependence of the resonant profile on incident photon energy is still not fully understood. Previous endeavors in connecting indirect RIXS, such as Cu K-edge for example where scattering takes place only via the core-hole created as an intermediate state, with the charge dynamical structure factor S(q,omega) neglected complicated dependence on the intermediate state configuration. To resolve this issue, we performed an exact diagonalization study of the RIXS cross-section using the single-band Hubbard model by fully addressing the intermediate state contribution. Our results are relevant to indirect RIXS in correlated materials, such as high Tc cuprates. We demonstrate that RIXS spectra can be reduced to S(q,omega) when there is no screening channel for the core-hole potential in the intermediate state. We also show that two-magnon excitations are highlighted at the resonant photon energy when the core-hole potential in the corresponding intermediate state is poorly screened. Our results demonstrate that different elementary excitations can be emphasized at different intermediate states, such that selecting the exact incident energy is critical when trying to capture a particular elementary excitation.
Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than i
Low-energy electron excitation spectra were measured on a single crystal of a typical iron-based superconductor PrFeAsO$_{0.7}$ using resonant inelastic X-ray scattering (RIXS) at the Fe-$L_3$ edge. Characteristic RIXS features are clearly observed a
We have used high-resolution resonant inelastic x-ray scattering (RIXS) to study a thin film of NdNiO$_3$, a compound whose unusual spin- and bond-ordered electronic ground state has been of long-standing interest. Below the magnetic ordering tempera
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in u
To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfe