ﻻ يوجد ملخص باللغة العربية
Given a polyhedral cone sigma with smooth two-dimensional faces and, moreover, a lattice point R in the dual cone of sigma, we describe the part of the versal deformation of the associated toric variety TV(sigma) that is built from the deformation parameters of multidegree R. Let Q the polyhedron obtained by intersecting sigma with the hyperplane R=1. Then the base space is (the germ of) an affine scheme that reflects certain possibilities of splitting Q into Minkowski summands.
We explicitly describe infintesimal deformations of cyclic quotient singularities that satisfy one of the deformation conditions introduced by Wahl, Kollar-Shepherd-Barron and Viehweg. The conclusion is that in many cases these three notions are diff
In this article, we provide a complete list of simple Cohen-Macaulay codimension 2 singularities together with a list of adjacencies which is complete in the case of fat point and space curve singularities.
We present new open manifolds that are not homeomorphic to leaves of any C^0 codimension one foliation of a compact manifold. Among them are simply connected manifolds of dimension 5 or greater that are non-periodic in homotopy or homology, namely in their 2-dimensional homotopy or homology groups.
We give a version in characteristic $p>0$ of Mumfords theorem characterizing a smooth complex germ of surface $(X,x)$ by the triviality of the topological fundamental group of $U=Xsetminus {x}$. This note relies on discussions the authors had durin
We reproduce the quantum cohomology of toric varieties (and of some hypersurfaces in projective spaces) as the cohomology of certain vertex algebras with differential. The deformation technique allows us to compute the cohomology of the chiral de Rham complex over the projective space.