ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of charged gibbsite platelets in the isotropic phase

134   0   0.0 ( 0 )
 نشر من قبل Marco Heinen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on depolarized and non-depolarized dynamic light scattering, static light scattering, and static viscosity measurements on interacting charged gibbsite platelets suspended in dimethyl sulfoxide (DMSO). The average collective and (long-time) translational self-diffusion coefficients, and the rotational diffusion coefficient, have been measured as functions of the platelet volume fraction phi, up to the isotropic-liquid crystal (I/LC) transition. The non-depolarized intensity autocorrelation function, measured at low scattering wavenumbers, consists of a fast and a slowly decaying mode which we interpret as the orientationally averaged collective and translational self-diffusion coefficients, respectively. Both the rotational and the long-time self-diffusion coefficients decrease very strongly, by more than two orders of magnitude, in going from the very dilute limit to the I/LC transition concentration. A similarly strong decrease, with increasing phi, is observed for the inverse zero-strain limiting static shear viscosity. With increasing phi, increasingly strong shear-thinning is observed, accompanied by a shrinking of the low shear-rate Newtonian plateau. The measured diffusion coefficients are interpreted theoretically in terms of a simple model of effective charged spheres interacting by a screened Coulomb potential, with hydrodynamic interactions included. The disk-like particle shape, and the measured particle radius and thickness polydispersities, enter into the model calculations via the scattering amplitudes. The interaction-induced enhancement of the collective diffusion coefficient by more than a factor of 20 at larger volume fractions is well captured in the effective sphere model, whereas the strong declines both of the experimental translational and rotational self-diffusion coefficients are underestimated.



قيم البحث

اقرأ أيضاً

When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. We performed Monte Carlo simulations to study the phase diagram of such rod-polymer mixture. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. Large amounts of depletant cause phase separation of the mixture. We estimated the phase boundaries of isotropic-isotropic coexistence both, in the bulk and in confinement. To determine the phase boundaries we applied the grand canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120, 10925 (2004)], and we performed a finite-size scaling analysis to estimate the location of the critical point. The results are compared with predictions of the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento D 16, 949 (1994)]. We also give estimates for the interfacial tension between the coexisting isotropic phases and analyse its power-law behaviour on approach of the critical point.
93 - A. Roshi 2003
High-resolution ac-calorimetry has been carried out on dispersions of aerosils in the liquid crystal octyloxycyanobiphenyl (8OCB) as a function of aerosil concentration and temperature spanning the crystal to isotropic phases. The liquid-crystal 8OCB is elastically stiffer than the previously well studied octylcyanobiphenyl (8CB)+aerosil system and so, general quenched random disorder effects and liquid-crystal specific effects can be distinguished. A double heat capacity feature is observed at the isotropic to nematic phase transition with an aerosil independent overlap of the heat capacity wings far from the transition and having a non-monotonic variation of the transition temperature. A crossover between low and high aerosil density behavior is observed for 8OCB+aerosil. These features are generally consistent with those on the 8CB+aerosil system. Differences between these two systems in the magnitude of the transition temperature shifts, heat capacity suppression, and crossover aerosil density between the two regimes of behavior indicate a liquid crystal specific effect. The low aerosil density regime is apparently more orientationally disordered than the high aerosil density regime, which is more translationally disordered. An interpretation of these results based on a temperature dependent disorder strength is discussed. Finally, a detailed thermal hysteresis study has found that crystallization of a well homogenized sample perturbs and increases the disorder for low aerosil density samples but does not influence high density samples.
132 - Leiming Chen , John Toner 2012
We study theoretically the smectic A to C phase transition in isotropic disordered environments. Surprisingly, we find that, as in the clean smectic A to C phase transition, smectic layer fluctuations do not affect the nature of the transition, in sp ite of the fact that they are much stronger in the presence of the disorder. As a result, we find that the universality class of the transition is that of the Random field XY model (RFXY).
Soft matter materials, such as polymers, membranes, proteins, are often electrically charged. This makes them water soluble, which is of great importance in technological application and a prerequisite for biological function. We discuss a few static and dynamic systems that are dominated by charge effects. One class comprises complexation between oppositely charged objects, for example the adsorption of charged ions or charged polymers (such as DNA) on oppositely charged substrates of different geometry. The second class comprises effective interactions between similarly charged objects. Here the main theme is to understand the experimental finding that similarly and highly charged bodies attract each other in the presence of multi-valent counterions. This is demonstrated using field-theoretic arguments as well as Monte-Carlo simulations for the case of two homogeneously charged bodies. Realistic surfaces, on the other hand, are corrugated and also exhibit modulated charge distributions, which is important for static properties such as the counterion-density distribution, but has even more pronounced consequences for dynamic properties such as the counterion mobility. More pronounced dynamic effects are obtained with highly condensed charged systems in strong electric fields. Likewise, an electrostatically collapsed highly charged polymer is unfolded and oriented in strong electric fields. At the end of this review, we give a very brief account of the behavior of water at planar surfaces and demonstrate using ab-initio methods that specific interactions between oppositely charged groups cause ion-specific effects that have recently moved into the focus of interest.
We present an experimental study of short-time diffusion properties in fluid-like suspensions of monodisperse charge-stabilized silica spheres suspended in DMF. The static structure factor S(q), the short-time diffusion function, D(q), and the hydrod ynamic function, H(q), in these systems have been probed by combining X-ray photon correlation spectroscopy experiments with static small-angle X-ray scattering. Our experiments cover the full liquid-state part of the phase diagram, including deionized systems right at the liquid-solid phase boundary. We show that the dynamic data can be consistently described by the renormalized density fluctuation expansion theory of Beenakker and Mazur over a wide range of concentrations and ionic strengths. In accord with this theory and Stokesian dynamics computer simulations, the measured short-time properties cross over monotonically, with increasing salt content, from the bounding values of salt-free suspensions to those of neutral hard spheres. Moreover, we discuss an upper bound for the hydrodynamic function peak height of fluid systems based on the Hansen-Verlet freezing criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا