ترغب بنشر مسار تعليمي؟ اضغط هنا

Bringing the LHC and ATLAS to a regional planetarium

230   0   0.0 ( 0 )
 نشر من قبل Reinhard Schwienhorst
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An outreach effort has started at Michigan State University to bring particle physics, the Large Hadron Collider, and the ATLAS experiment to a general audience at the Abrams planetarium on the MSU campus. A team of undergraduate students majoring in physics, communications arts & sciences, and journalism are putting together short clips about ATLAS and the LHC to be shown at the planetarium.

قيم البحث

اقرأ أيضاً

The study of QCD processes at the LHC will serve two main goals. First, the predictions of Quantum Chromodynamics will be tested and precision measurements will be performed, allowing additional constraints to be established, and providing measuremen ts of the strong coupling constant. Second, QCD processes represent a major part of the background to other Standard Model processes and signals of new physics at the LHC and therefore need to be understood in depth. An overview of various measurements of QCD-related processes to be performed at the LHC is presented, based on final states containing high-pT leptons, photons and jets. Moreover, possible deviations from QCD predictions indicating presence of new physics are discussed.
The advent of computing resources with co-processors, for example Graphics Processing Units (GPU) or Field-Programmable Gate Arrays (FPGA), for use cases like the CMS High-Level Trigger (HLT) or data processing at leadership-class supercomputers impo ses challenges for the current data processing frameworks. These challenges include developing a model for algorithms to offload their computations on the co-processors as well as keeping the traditional CPU busy doing other work. The CMS data processing framework, CMSSW, implements multithreading using the Intel Threading Building Blocks (TBB) library, that utilizes tasks as concurrent units of work. In this paper we will discuss a generic mechanism to interact effectively with non-CPU resources that has been implemented in CMSSW. In addition, configuring such a heterogeneous system is challenging. In CMSSW an application is configured with a configuration file written in the Python language. The algorithm types are part of the configuration. The challenge therefore is to unify the CPU and co-processor settings while allowing their implementations to be separate. We will explain how we solved these challenges while minimizing the necessary changes to the CMSSW framework. We will also discuss on a concrete example how algorithms would offload work to NVIDIA GPUs using directly the CUDA API.
The ATLAS collaboration has recently reported a 2.6 sigma excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really origi nates from the gauge bosons decays, other decay modes of the gauge bosons would inevitably leave a trace on other exotic searches. In this paper, we propose the use of the Z boson decay into a pair of neutrinos to test the excess. This decay leads to a very large missing energy and can be probed with conventional dark matter searches at the LHC. We discuss the current constraints from the dark matter searches and the prospects. We find that optimizing these searches may give a very robust probe of the resonance, even with the currently available data of the 8 TeV LHC.
Despite the discovery of the Higgs boson decay in five separate channels many parameters of the Higgs boson remain largely unconstrained. In this paper, we present a new approach to constraining the Higgs total width by requiring the Higgs to be reso lved as a single high p$_T$ jet and measuring the inclusive Higgs boson cross section. To measure the inclusive Higgs boson cross section, we rely on new approaches from machine learning and a modified jet reconstruction. This approach is found to be complementary to the existing off-shell width measurement and, with the full HL-LHC luminosity, is capable of yielding similar sensitivity to the off-shell projections. We outline the theoretical and experimental limitations and present a path towards making this approach a truly model-independent measurement of the Higgs boson total width.
In this paper it is shown that a measurement of the relative luminosity changes at the LHC may be obtained by analysing the currents drawn from the high voltage power supplies of the electromagnetic section of the forward calorimeter of the ATLAS det ector. The method was verified with a reproduction of a small section of the ATLAS forward calorimeter using proton beams of known beam energies and variable intensities at the U-70 accelerator at IHEP in Protvino, Russia. The experimental setup and the data taking during a test beam run in April 2008 are described in detail. A comparison of the measured high voltage currents with reference measurements from beam intensity monitors shows a linear dependence on the beam intensity. The non-linearities are measured to be less than 0.5 % combining statistical and systematic uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا