ﻻ يوجد ملخص باللغة العربية
We present a simple dimensional argument to illustrate the impact of nonthermal support from turbulent velocity dispersion on the shape of the prestellar core mass function (CMF), precursor of the stellar initial mass function (IMF). The argument demonstrates the need to invoke such support to recover the Salpeter slope in the high-mass part of the CMF/IMF, whereas pure thermal support leads to a much steeper slope. This simple dimensional argument clearly highlights the results obtained in the complete Hennebelle-Chabrier theory of the IMF.
the present paper, we propose that the stellar initial mass distributions as known as IMF are best fitted by $q$-Weibulls that emerge within nonextensive statistical mechanics. As a result, we show that the Salpeters slope of $sim$2.35 is replaced wh
We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic e
Classical theories for the stellar initial mass function (IMF) predict a peak mass which scales with the properties of the molecular cloud. In this work, we explore a new theory proposed by Lee & Hennebelle (2018). The idea is that the tidal field ar
The initial mass function (IMF) succinctly characterizes a stellar population, provides a statistical measure of the end result of the star-formation process, and informs our under- standing of the structure and dynamical evolution of stellar cluster
We present a simple statistical analysis of recent numerical simulations exploring the correlation between the core mass function obtained from the fragmentation of a molecular cloud and the stellar mass function which forms from these collapsing cor