ﻻ يوجد ملخص باللغة العربية
The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.
We have used post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes for spectroscopic studies. Through resonant
We have used resonant Raman scattering spectroscopy to fully analyze the relative abundances of different (n,m) species in single-walled carbon nanotube samples that are metallically enriched by density gradient ultracentrifugation. Strikingly, the d
In carbon nanotubes, the most abundant defects, caused for example by irradiation or chemisorption treatments, are small perturbing clusters, i.e. bi-site defects, extending over both A and B sites. The relative positions of these perturbing clusters
We present a novel floating catalyst synthesis route for individual, i.e. non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ sp
We comment on the paper by H. Yoshioka and A. Odintsov, to appear in PRL, see cond-mat/9805106.