ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of antiferromagnetism and superconductivity within t-J model with strong correlations and nonzero spin polarization

42   0   0.0 ( 0 )
 نشر من قبل Jan Kaczmarczyk
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coexistence of antiferromagnetism with superconductivity is studied theoretically within the t-J model with the Zeeman term included. The strong electron correlations are accounted for by means of the extended Gutzwiller projection method within a statistically-consistent approach proposed recently. The phase diagram on the band filling - magnetic field plane is shown, and subsequently the system properties are analyzed for the fixed band filling n=0.97. In this regime, the results reflect principal qualitative features observed recently in selected heavy fermion systems. Namely, (i) with the increasing magnetic field the system evolves from coexisting antiferromagnetic-superconducting phase, through antiferromagnetic phase, towards polarized paramagnetic state, and (ii) the onset of superconducting order suppresses partly the staggered moment. The superconducting gap has both the spin-singlet and the staggered-triplet components, a direct consequence of a coexistence of the superconducting state with antiferromagnetism.

قيم البحث

اقرأ أيضاً

Antiferromagnetism and $d$-wave superconductivity are the most important competing ground-state phases of cuprate superconductors. Using cellular dynamical mean-field theory (CDMFT) for the Hubbard model, we revisit the question of the coexistence an d competition of these phases in the one-band Hubbard model with realistic band parameters and interaction strengths. With an exact diagonalization solver, we improve on previous works with a more complete bath parametrization which is carefully chosen to grant the maximal possible freedom to the hybridization function for a given number of bath orbitals. Compared with previous incomplete parametrizations, this general bath parametrization shows that the range of microscopic coexistence of superconductivity and antiferromagnetism is reduced for band parameters for NCCO, and confined to electron-doping with parameters relevant for YBCO.
We report the novel pressure(P)-temperature(T) phase diagrams of antiferromagnetism (AF) and superconductivity (SC) in CeRhIn$_5$, CeIn$_3$ and CeCu$_2$Si$_2$ revealed by the NQR measurement. In the itinerant helical magnet CeRhIn$_5$, we found that the Neel temperature $T_N$ is reduced at $P geq$ 1.23 GPa with an emergent pseudogap behavior. The coexistence of AF and SC is found in a narrow P range of 1.63 - 1.75 GPa, followed by the onset of SC with line-node gap over a wide P window 2.1 - 5 GPa. In CeIn$_3$, the localized magnetic character is robust against the application of pressure up to $P sim$ 1.9 GPa, beyond which the system evolves into an itinerant regime in which the resistive superconducting phase emerges. We discuss the relationship between the phase diagram and the magnetic fluctuations. In CeCu$_2$Si$_2$, the SC and AF coexist on a microscopic level once its lattice parameter is expanded. We remark that the underlying marginal antiferromagnetic state is due to collective magnetic excitations in the superconducting state in CeCu$_2$Si$_2$. An interplay between AF and SC is discussed on the SO(5) scenario that unifies AF and SC. We suggest that the SC and AF in CeCu$_2$Si$_2$ have a common mechanism.
We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic and d-wave pairing. This enables us to study the interplay between these two kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expectation values of the pair-pair correlation functions. In the case of $t^prime=0$, there is a large region with a coexistence of superconductivity and antiferromagnetism, that survives up to $delta_c sim 0.10$ for $J/t=0.2$ and $delta_c sim 0.13$ for $J/t=0.4$. The presence of a finite $t^prime/t<0$ induces a strong suppression of both magnetic (with $delta_c lesssim 0.03$, for $J/t=0.2$ and $t^prime/t=-0.2$) and pairing correlations. In particular, the latter ones are depressed both in the low-doping regime and around $delta sim 0.25$, where strong size effects are present.
203 - N.M. Plakida 2002
A comparison of microscopic theories of superconductivity in the limit of strong electron correlations is presented. We consider results for the two-dimensional t-J model obtained within the projection technique for the Green functions in terms of th e Hubbard operators and the slave-fermion representation for the RVB state. It is argued that the latter approach resulting in the odd-symmetry p-wave pairing for fermions is inadequate.
173 - L. Vidmar , J. Bonca 2013
Determination of the parameter regime in which two holes in the t-J model form a bound state represents a long standing open problem in the field of strongly correlated systems. By applying and systematically improving the exact diagonalization metho d defined over a limited functional space (EDLFS), we show that the average distance between two holes scales as $langle d rangle sim 2 (J/t)^{-1/4}$ for J/t < 0.15, therefore providing strong evidence that two holes in the t-J model form the bound state for any nonzero J/t. However, the symmetry of such bound pair in the ground state is p-wave. This state is consistent with phase separation at finite hole filling, as observed in a recent study [Maska et al, Phys. Rev. B 85, 245113 (2012)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا