ترغب بنشر مسار تعليمي؟ اضغط هنا

The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

146   0   0.0 ( 0 )
 نشر من قبل Alexis Schubert
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.



قيم البحث

اقرأ أيضاً

The {sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would sh ow that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, $15 - 50$ meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of $sim$1 count/t-y or lower in the region of the signal. The {sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which $sim$30 kg will be enriched to 87% in $^{76}$Ge. The {sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850 level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.
Neutrinoless double-beta decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos ar e Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the Majorana Demonstrator, a 40-kg modular germanium detector array, to search for the Neutrinoless double-beta decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge Neutrinoless double-beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the Majorana Demonstrator, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.
The MAJORANA Collaboration is operating an array of high purity Ge detectors to search for the neutrinoless double-beta decay of $^{76}$Ge. The MAJORANA DEMONSTRATOR consists of 44.1 kg of Ge detectors (29.7 kg enriched to 88% in $^{76}$Ge) split bet ween two modules constructed from ultra-clean materials. Both modules are contained in a low-background shield at the Sanford Underground Research Facility in Lead, South Dakota. We present updated results on the search for neutrinoless double-beta decay in $^{76}$Ge with $26.0pm0.5$ kg-yr of enriched exposure. With the DEMONSTRATORs unprecedented energy resolution of 2.53 keV FWHM at $Q_{betabeta}$, we observe one event in the region of interest with 0.65 events expected from the estimated background, resulting in a lower limit on the $^{76}$Ge neutrinoless double-beta decay half-life of $2.7times10^{25}$ yr (90% CL) with a median sensitivity of $4.8times10^{25}$ yr (90% CL). Depending on the matrix elements used, a 90% CL upper limit on the effective Majorana neutrino mass in the range of 200-433 meV is obtained. The measured background in the low-background configurations is $11.9pm2.0$ counts/(FWHM t yr).
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next genera tion of tonnescale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First data taken with the DEMONSTRATOR are introduced here.
Neutrinoless double-$beta$ decay ($0 ubetabeta$ decay) is a hypothetical process that can occur if the neutrino is its own antiparticle. The COBRA collaboration operates a demonstrator to search for these decays at the Laboratori Nazionali del Gran S asso in Italy using CdZnTe semiconductor detectors. The exposure of $234.7,$kg,d considered in this analysis was collected between September 2011 and February 2015. The analysis focuses on the decay of the nuclides $^{114}$Cd, $^{128}$Te, $^{70}$Zn, $^{130}$Te and $^{116}$Cd. A Bayesian analysis is performed to estimate the signal strength of $0 ubetabeta$ decay. No signal is observed for any of these nuclides. Therefore, the following half-life limits at 90% credibility are set: $T_{1/2}^{0 u}>1.6cdot10^{21},$yr ($^{114}$Cd), $T_{1/2}^{0 u}>1.9cdot10^{21},$yr ($^{128}Te$), $T_{1/2}^{0 u}>6.8cdot10^{18},$yr ($^{70}$Zn), $T_{1/2}^{0 u}>6.1cdot10^{21},$yr ($^{130}$Te), and $T_{1/2}^{0 u}>1.1cdot10^{21},$yr ($^{116}$Cd).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا