ﻻ يوجد ملخص باللغة العربية
A successful attempt was made to analyse about 6000 single pulses of PSR B1133+16 obtained with the 100-meter Effelsberg radio-telescope. The high resolution (60 micro-seconds) data were taken at a frequency of 8.35 GHz with a bandwidth of 1.1 GHz. In order to examine the pulse-to-pulse intensity modulations, we performed both the longitude- and the harmonic-resolved fluctuation spectral analysis. We identified the low frequency feature associated with an amplitude modulation at f4 ~ 0.033 P1^(-1), which can be interpreted as the circulation time P4 ~ 30 P1 of the underlying subbeam carousel model. Despite an erratic nature of this pulsar, we also found an evidence of periodic pseudo-nulls with P4 = 28.44 P1. This is exactly the value at which Herfindal & Rankin found periodic pseudo-nulls in their 327 MHz data. We thus believe that this is the actual carousel circulation time in PSR B1133+16, particularly during orderly circulation.
Aims. To investigate the flux density modulation from pulsars and the existence of specific behaviour of modulation index versus frequency. Methods. Several pulsars have been observed with the Effelsberg radio telescope at 8.35 GHz. Their flux densit
The aim of this work is confirming the optical identification of PSR B1133+16, whose candidate optical counterpart was detected in Very Large Telescope (VLT) images obtained back in 2003. We used new deep optical images of the PSR B1133+16 field obta
We report on single-pulse observations of the Galactic Center magnetar PSR J1745$-$2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the i
Aims: We performed deep optical observations of the field of an old, fast-moving radio pulsar PSR B1133+16 in an attempt to detect its optical counterpart and a bow shock nebula. Methods: The observations were carried out using the direct imaging m
Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we have recorded 10^5 single pulses from PSR J1022+1001. We studied the polarization properties, their energy distribution and their times of arrival. This is only possible with