ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory-Data Comparisons for Jet Measurements in Hadron-Induced Processes

48   0   0.0 ( 0 )
 نشر من قبل Markus Wobisch
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive overview of theory-data comparisons for inclusive jet production. Theory predictions are derived for recent parton distribution functions and compared with jet data from different hadron-induced processes at various center-of-mass energies sqrt(s). The comparisons are presented as a function of jet transverse momentum pT or, alternatively, of the scaling variable xT = 2pT/sqrt(s).

قيم البحث

اقرأ أيضاً

The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single $W$ and $Z$ production processes and diboson ($W^{+}W^{-}$, $WZ$ and $ZZ$) production processes at hadron collisions in the fr amework of the GR@PPA event generator. The generated events reproduce the transverse momentum spectra of weak bosons continuously in the entire kinematical region. The matrix elements (ME) for hard interactions are still at the tree level. As in previo
We discuss, in the framework of perturbative QCD at next to leading order, two related observables which are usually considered to provide tests of the BFKL dynamics : jet-jet correlations at Tevatron energies and forward particle-jet correlations at HERA. In the first case we study the rapidity gap dependence of the azimuthal correlations and find slightly too strong correlations at large gap. In the second case we discuss the cross section as well as the azimuthal correlations over a rapidity gap range of 5 units. We find that the requirement of a forward particle imposes strong kinematical constraints which distort the distributions, notably at small rapidity gaps. We also show that the decorrelation is stronger in electroproduction than in hadron-hadron collisions. Unfortunately no data are yet available for comparison.
We present a novel global QCD analysis of charged $D^{*}$-meson fragmentation functions at next-to-leading order accuracy. This is achieved by making use of the available data for single-inclusive $D^{*}$-meson production in electron-positron annihil ation, hadron-hadron collisions, and, for the first time, in-jet fragmentation in proton-proton scattering. It is shown how to include all relevant processes efficiently and without approximations within the Mellin moment technique, specifically for the in-jet fragmentation cross section. The presented technical framework is generic and can be straightforwardly applied to future analyses of fragmentation functions for other hadron species, as soon as more in-jet fragmentation data become available. We choose to work within the Zero Mass Variable Flavor Number Scheme which is applicable for sufficiently high energies and transverse momenta. The obtained optimum set of parton-to-$D^{*}$ fragmentation functions is accompanied by Hessian uncertainty sets which allow one to propagate hadronization uncertainties to other processes of interest.
85 - U. Baur 2006
The O(alpha) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(alpha) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(alpha) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, t-bar t, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(alpha) virtual weak radiative corrections partially cancel.
We consider inelastic QED processes, the cross sections of which do not drop with increasing energy. Such reactions have the form of two-jet processes with the exchange of a virtual photon in the t-channel. We consider them in the region of small sca ttering angles m/E <= theta << 1, which yield the dominant contribution to their cross sections. A new effective method is presented to calculate the corresponding helicity amplitudes. Its basic idea consists in replacing spinor structures for real and weakly virtual intermediate leptons by simple transition vertices for real leptons. The obtained compact amplitudes are particularly suitable for numerical calculations in jet-like kinematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا