ﻻ يوجد ملخص باللغة العربية
We study the lepton flavor violating (LFV) decays Z-> l_i l_j (l_{i,j}=e,mu,tau) in the framework of the minimal 331 model. The main contributions arise at the one-loop level via a doubly charged bilepton with general LFV couplings. We obtain an estimate for the corresponding branching ratios by using the bounds on the LFV couplings of the doubly charged bilepton from the current experimental limits on the decays l_i-> l_jgamma and l_i-> l_j l_k l_k. A bound on the bilepton mass is also obtained through the current limit on the anomalous magnetic moment of the muon. It is found that the bilepton contributions to LFV Z decays are not expected to be at the reach of experimental detection. In particular, the branching ratio for the Z-> mu tau decay is below the 10^{-10} level for a bilepton mass of the order of 500 GeV.
In the simplest little Higgs model the new flavor-changing interactions between heavy neutrinos and the Standard Model leptons can generate contributions to some lepton flavor violating decays of $Z$-boson at one-loop level, such as $Z to tau^{pm}mu^
We analyse the dependence of the rates of the LFV charged lepton decays mu to e + gamma, tau to e + gamma, tau to mu + gamma (l_i to l_j + gamma) and their ratios, predicted in the class of SUSY theories with see-saw mechanism of nu-mass generation a
The lepton flavor violating $Z^{prime}totaumu$ decay is studied in the context of several extended models that predict the existence of the new gauge boson named $Z^prime$. A calculation of the strength of the lepton flavor violating $Z^primemutau$ c
We calculate lepton flavor violating Z -> l^+ l^- decay in the framework of the general two Higgs Doublet model. In our calculations we used the constraints for the Yukawa couplings bar{xi}^{D}_{N,tau e} and bar{xi}^{D}_{N,taumu} coming from the expe
This dissertation reviews the Standard Model formalism as well as the Lepton Flavour Violating (LFV) decay processes which cause its extension, known as the physics beyond the SM. Firstly, using the experimental bounds on three body LFV decays, the c