ترغب بنشر مسار تعليمي؟ اضغط هنا

Further Results from the Galactic O-Star Spectroscopic Survey: Rapidly Rotating Late ON Giants

118   0   0.0 ( 0 )
 نشر من قبل Sharon Toolan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nolan R. Walborn




اسأل ChatGPT حول البحث

With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two clones (HD 102415 and HD 117490) of one of the most rapidly rotating O stars previously known (HD 191423, Howarths Star). We compare the locations of these objects in the theoretical HR Diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is; but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of those properties. They may have preserved high initial rotational velocities or been spun up by TAMS core contraction; but alternatively and perhaps more likely, they may be products of binary mass transfer. At least some of them are also runaway stars.



قيم البحث

اقرأ أيضاً

The Galactic O-Star Spectroscopic Survey (GOSSS) is obtaining high quality R~2500 blue-violet spectroscopy of all Galactic stars ever classified as of O type with B < 12 and a significant fraction of those with B = 12-14. As of June 2013, we have obt ained, processed, and classified 2653 spectra of 1593 stars, including all of the sample with B < 8 and most of the sample with B = 8-10, making GOSSS already the largest collection of high quality O-star optical spectra ever assembled by a factor of 3. We discuss the fraction of false positives (stars classified as O in previous works that do not belong to that class) and the implications of the observed magnitude distribution for the spatial distribution of massive stars and dust within a few kpc of the Sun. We also present new spectrograms for some of the interesting objects in the sample and show applications of GOSSS data to the study of the intervening ISM. Finally, we present the new version of the Galactic O-Star Catalog (GOSC), which incorporates the data in GOSSS-DR1, and we discuss our plans for MGB, an interactive spectral classification tool for OB stars.
Two new ON supergiant spectra (bringing the total known to seven) and one new ONn giant (total of this class now eight) are presented; they have been discovered by the Galactic O-Star Spectroscopic Survey. These rare objects represent extremes in the mixing of CNO-cycled material to the surfaces of evolved, late-O stars, by uncertain mechanisms in the first category but likely by rotation in the second. The two supergiants are at the hot edge of the class, which is a selection effect from the behavior of defining N III and C III absorption blends, related to the tendency toward emission (Of effect) in the former. An additional N/C criterion first proposed by Bisiacchi et al. is discussed as a means to alleviate that effect, and it is relevant to the two new objects. The entire ON supergiant class is discussed; they display a fascinating diversity of detail undoubtedly related to the complexities of their extended atmospheres and winds that are sensitive to small differences in physical parameters, as well as to binary effects in some cases. Serendipitously, we have found significant variability in the spectrum of a little-known hypergiant with normal N, C spectra selected as a comparison for the anomalous objects. In contrast to the supergiants, the ONn spectra are virtual (nitrogen)-carbon copies of one another except for the degrees of line broadening, which emphasizes their probable unique origin and hence amenability to definitive astrophysical interpretation.
On the basis of an extensive new spectroscopic survey of Galactic O stars, we introduce the Ofc category, which consists of normal spectra with C III lambdalambda4647-4650-4652 emission lines of comparable intensity to those of the Of defining lines N III lambdalambda4634-4640-4642. The former feature is strongly peaked to spectral type O5, at all luminosity classes, but preferentially in some associations or clusters and not others. The relationships of this phenomenon to the selective C III lambda5696 emission throughout the normal Of domain, and to the peculiar, variable Of?p category, for which strong C III lambdalambda4647-4650-4652 emission is a defining characteristic, are discussed. Magnetic fields have recently been detected on two members of the latter category. We also present two new extreme Of?p stars, NGC 1624-2 and CPD -28^{circ}2561, bringing the number known in the Galaxy to five. Modeling of the behavior of these spectral features can be expected to better define the physical parameters of both normal and peculiar objects, as well as the atomic physics involved.
This is the third installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R~2500 digital observations selected from the Galactic O-Star Catalog (GOSC). In this paper we present 1 42 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries (SB2s), of which 6 are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary (SB3) of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al. (2016).
We observed strong superflares (defined as flares with energy in excess of 10^33 erg) on three late-M dwarfs: 2MASS J08315742+2042213 (hereafter 2M0831+2042; M7 V), 2MASS J08371832+2050349 (hereafter 2M0837+2050; M8 V) and 2MASS J08312608+2244586 (he reafter 2M0831+2244; M9 V). 2M0831+2042 and 2M0837+2050 are members of the young (~700 Myr) open cluster Praesepe. The strong superflare on 2M0831+2042 has an equivalent duration (ED) of 13.7 hr and an estimated energy of 1.3 X 10^35 erg. We observed five superflares on 2M0837+2050, on which the strongest superflare has an ED of 46.4 hr and an estimated energy of 3.5 X 10^35 erg. This energy is larger by 2.7 orders of magnitude than the largest flare observed on the older (7.6 Gyr) planet-hosting M8 dwarf TRAPPIST-1. Furthermore, we also observed five superflares on 2M0831+2244 which is probably a field star. The estimated energy of the strongest superflare on 2M0831+2244 is 6.1 X 10^34 erg. 2M0831+2042, 2M0837+2050 and 2MASS J0831+2244 have rotation periods of 0.556pm0.002, 0.193pm0.000 and 0.292pm0.001 d respectively, which are measured by using K2 light curves. We compare the flares of younger targets with those of TRAPPIST-1 and discuss the possible impacts of such flares on planets in the habitable zone of late-M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا