ترغب بنشر مسار تعليمي؟ اضغط هنا

Band structure of a two dimensional metallic photonic crystal and the experimental observation of negative refraction in the microwave region

47   0   0.0 ( 0 )
 نشر من قبل Doroteo Mendoza
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe an application of the finite difference method to obtain the transverse magnetic photonic band gap diagram of a photonic crystal. The strategy of this method is to formulate the Maxwell equations in finite differences in order to write a computational code. We present experiments that confirm the validity of the calculations of the photonic band diagram as well as the refraction indix of such structure. All calculations were made for two dimensional metallic photonic crystal.

قيم البحث

اقرأ أيضاً

The recently realized photonic crystal Fano laser constitutes the first demonstration of passive pulse generation in nanolasers [Nat. Photonics $boldsymbol{11}$, 81-84 (2017)]. We show that the laser operation is confined to only two degrees-of-freed om after the initial transition stage. We show that the original 5D dynamic model can be reduced to a 1D model in a narrow region of the parameter space and it evolves into a 2D model after the exceptional point, where the eigenvalues transition from being purely to a complex conjugate pair. The 2D reduced model allows us to establish an effective band structure for the eigenvalue problem of the stability matrix to explain the laser dynamics. The reduced model is used to associate a previously unknown origin of instability with a new unstable periodic orbit separating the stable steady-state from the stable periodic orbit.
We demonstrate two-dimensional photonic crystal cavities operating at telecommunication wavelengths in a single-crystal diamond membrane. We use a high-optical-quality and thin (~ 300 nm) diamond membrane, supported by a polycrystalline diamond frame , to realize fully suspended two-dimensional photonic crystal cavities with a high theoretical quality factor of ~ $8times10^6$ and a relatively small mode volume of ~2$({lambda}/n)^3$. The cavities are fabricated in the membrane using electron-beam lithography and vertical dry etching. We observe cavity resonances over a wide wavelength range spanning the telecommunication O- and S-bands (1360 nm-1470 nm) with Q factors of up to ~1800. Our method offers a new direction for on-chip diamond nanophotonic applications in the telecommunication-wavelength range.
We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one dimensional obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes, and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e.g. interstitial, substitutional) and shows that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulas, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penney model.
We analyze different factors which influence the negative refraction in solids and multi-atom molecules. We find that this negative refraction is significantly influenced by simultaneous multi-electron transitions with the same transition frequency a nd dipole redistribution over different eigenstates. We show that these simultaneous multi-electron transitions and enhanced transition dipole broaden the bandwidth of the negative refraction by at least one order of magnitude. This work provides additional connection between metamaterials and Mobius strips.
84 - Longfei Li , Jianlan Xie , 2019
In this paper, a non-Hermitian two-dimensional photonic crystal flat lens is proposed. The negative refraction of the second band of photonic crystal is utilized to realize super-resolution imaging of the point source. Based on the principles of non- Hermitian systems, a negative imaginary part is introduced into the imaging frequency, in which case the imaging intensity and resolution are improved. The results indicate that the non-Hermitian system provides a new method to improve the imaging performance of the photonic crystal lens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا