ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational constraints on the physics behind the evolution of AGN since z ~ 1

113   0   0.0 ( 0 )
 نشر من قبل Antonis Georgakakis
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Georgakakis




اسأل ChatGPT حول البحث

We explore the evolution with redshift of the rest-frame colours and space densities of AGN hosts (relative to normal galaxies) to shed light on the dominant mechanism that triggers accretion onto supermassive black holes as a function of cosmic time. Data from serendipitous wide-area XMM surveys of the SDSS footprint (XMM/SDSS, Needles in the Haystack survey) are combined with Chandra deep observations in the AEGIS, GOODS-North and GOODS-South to compile uniformly selected samples of moderate luminosity X-ray AGN [L_X(2-10keV) = 1e41-1e44erg/s] at redshifts 0.1, 0.3 and 0.8. It is found that the fraction of AGN hosted by red versus blue galaxies does not change with redshift. Also, the X-ray luminosity density associated with either red or blue AGN hosts remains nearly constant since z=0.8. X-ray AGN represent a roughly fixed fraction of the space density of galaxies of given optical luminosity at all redshifts probed by our samples. In contrast the fraction of X-ray AGN among galaxies of a given stellar mass decreases with decreasing redshift. These findings suggest that the same process or combination of processes for fueling supermassive black holes are in operation in the last 5 Gyrs of cosmic time. The data are consistent with a picture in which the drop of the accretion power during that period (1dex since z=0.8) is related to the decline of the space density of available AGN hosts, as a result of the evolution of the specific star-formation rate of the overall galaxy population. Scenarios which attribute the evolution of moderate luminosity AGN since z approx 1 to changes in the suppermassive black hole accretion mode are not favored by our results.



قيم البحث

اقرأ أيضاً

A large fraction of the stellar mass in galaxy clusters is thought to be contained in the diffuse low surface brightness intracluster light (ICL). Being bound to the gravitational potential of the cluster rather than any individual galaxy, the ICL co ntains much information about the evolution of its host cluster and the interactions between the galaxies within. However due its low surface brightness it is notoriously difficult to study. We present the first detection and measurement of the flux contained in the ICL at z~1. We find that the fraction of the total cluster light contained in the ICL may have increased by factors of 2-4 since z~1, in contrast to recent findings for the lack of mass and scale size evolution found for brightest cluster galaxies. Our results suggest that late time buildup in cluster cores may occur more through stripping than merging and we discuss the implications of our results for hierarchical simulations.
140 - P. Arnalte-Mur 2013
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cov er $2.38 mathrm{deg}^2$ in 7 independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, $sigma_z lesssim 0.014 (1+z)$, down to $I_{rm AB} < 24$. Given the depth of the survey, we select samples in $B$-band luminosity down to $L^{rm th} simeq 0.16 L^{*}$ at $z = 0.9$. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the COSMOS and ELAIS-N1 fields are dominated by the presence of large structures. For the intermediate and bright samples, $L^{rm med} gtrsim 0.6L^{*}$, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 11.5$ for samples with $L^{rm med} simeq 0.3 L^{*}$ and $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 13.0$ for samples with $L^{rm med} simeq 2 L^{*}$, with typical occupation numbers in the range of $sim 1 - 3$ galaxies per halo.
CMB observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers $10^{-3}$ Mpc$^{-1}$ < k < 0.1 Mpc$^{-1}$, [1-8]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc$^{-1}$ < k < 0.7 Mpc$^{-1}$ [9-18]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc$^{-1} < k < 3$ Mpc$^{-1}$; [19]). These observations indicate that the primordial power spectrum is nearly scale-invariant with amplitude close to $2 times 10^{-9}$, [5, 20-25]. They also strongly support Inflation and motivate us to obtain constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. One could obtain limits to much higher values of $k < 10^5$ Mpc$^{-1}$ and with less sensitivity even higher to $k < 10^{19}- 10^{23}$ Mpc$^{-1}$ using limits from CMB spectral distortions(SD)and on ultracompact minihalo objects(UCMHs)and Primordial Black Holes(PBHs). In this paper, we revisit and collect all the known constraints on both PBHs and UCMHs. We show that unless one uses SD, PBHs give us very relaxed bounds on the primordial curvature perturbations. UCMHs are very informative over a reasonable $k$ range($3 < k < 10^6$ Mpc$^{-1}$)and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of Dark Matter that could be PBHs. Failure to satisfy these conditions would lead to over production of the UCMHs, which is inconsistent with the observations. Therefore, we can almost rule out PBH within their overlap scales with the UCMHs. We consider the UCMH bounds from experiments such as $gamma$-rays, Neutrinos, Reionization, pulsar-timing and SD. We show that they lead to comparable results independent of the form of DM.
We have explored the buildup of the local mass-size relation of elliptical galaxies using two visually classified samples. At low redshift we compiled a subsample of 2,656 elliptical galaxies from SDSS, whereas at higher redshift (up to z~1) we extra cted a sample of 228 object from the HST/ACS images of the GOODS. All the galaxies in our study have spectroscopic data, allowing us to determine the age and mass of the stellar component. Using the fossil record information contained in the stellar populations of our local sample, we do not find any evidence for an age segregation at a given stellar mass depending on the size of the galaxies. At a fixed dynamical mass there is only a <9% size difference in the two extreme age quartiles of our sample. Consequently, the local evidence does not support a scenario whereby the present-day mass-size relation has been progressively established via a bottom-up sequence, where older galaxies occupy the lower part this relation, remaining in place since their formation. We find a trend in size that is insensitive to the age of the stellar populations, at least since z~1. This result supports the idea that the stellar mass-size relation is formed at z~1, with all galaxies populating a region which roughly corresponds to 1/2 of the present size distribution. The fact that the evolution in size is independent of stellar age, together with the absence of an increase in the scatter of the relationship with redshift does not support the puffing up mechanism. The observational evidence, however, can not reject at this stage the minor merging hypothesis. We have made an estimation of the number of minor merger events necessary to bring the high-z galaxies into the local relation compatible with the observed size evolution. Since z=0.8, if the merger mass ratio is 1:3 we estimate ~3+-1 minor mergers and if the ratio is 1:10 we obtain ~8+-2 events.
We present results of a statistical study of the cosmic evolution of the mass dependent major-merger rate since z=1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting evolutionary index m=2.2+-0.2. The best-fitting function for the merger rate implies that galaxies with stellar mass between 1E+10 -- 3E+11 M_sun have undergone 0.5 -- 1.5 major-mergers since z=1. Our results show that, for massive galaxies at z<1, major mergers involving star forming galaxies (i.e. wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies, but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass dependent (U)LIRG rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا