ﻻ يوجد ملخص باللغة العربية
The serendipitous discovery by Preston and colleagues of the neutron-capture-enhanced RR Lyrae variable star TY Gru (a.k.a. CS 22881-071 in the HK survey of very metal-poor halo stars) has resulted in a growing set of initiatives on the chemical compositions of RR Lyrae stars and their application to broader topics in Galactic halo structure. Here we summarize the main aspects of our work on TY Gru, including a new discussion of our search for possible orbital motion of this star around a putative unseen companion. Then we describe a few of the results of a newly-completed intensive spectroscopic investigation of 10 additional field RR Lyr stars. We finish by outlining current projects that seek to contrast the atmospheres and chemical compositions of RRc stars with those of the RRab stars, and that employ a much larger RRab sample in a chemo-dynamical study of Galactic halo RR Lyr.
We present a detailed abundance study of 11 RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps, and Z Mic.High resolution and high S/N echelle spectra of these variables were obtained with 2.
We present a detailed spectroscopic analysis of RR Lyrae (RRL) variables in the globular cluster NGC 5139 (omega Cen). We collected optical (4580-5330 A), high resolution (R = 34,000), high signal-to-noise ratio (200) spectra for 113 RRLs with the mu
We present a detailed spectroscopic analysis of horizontal branch stars in the globular cluster NGC 3201. We collected optical (4580-5330 A), high resolution (~34,000), high signal-to-noise ratio (~200) spectra for eleven RR Lyrae stars and one red h
We have analysed a sample of 18 RR Lyrae stars (17 fundamental-mode - RRab - and one first overtone - RRc) and three Population II Cepheids (two BL Her stars and one W Vir star), for which high-resolution (R $ge$30000), high signal-to-noise (S/N$ge$3
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time e