ﻻ يوجد ملخص باللغة العربية
We develop a general framework for reflexivity in dual Banach spaces, motivated by the question of when the weak* closed linear span of two reflexive masa-bimodules is automatically reflexive. We establish an affirmative answer to this question in a number of cases by examining two new classes of masa-bimodules, defined in terms of ranges of masa-bimodule projections. We give a number of corollaries of our results concerning operator and spectral synthesis, and show that the classes of masa-bimodules we study are operator synthetic if and only if they are strong operator Ditkin.
We develop a symbol calculus for normal bimodule maps over a masa that is the natural analogue of the Schur product theory. Using this calculus we are able to easily give a complete description of the ranges of contractive normal bimodule idempotents
We study containment and uniqueness problems concerning matrix convex sets. First, to what extent is a matrix convex set determined by its first level? Our results in this direction quantify the disparity between two product operations, namely the pr
We study w*-semicrossed products over actions of the free semigroup and the free abelian semigroup on (possibly non-selfadjoint) w*-closed algebras. We show that they are reflexive when the dynamics are implemented by uniformly bounded families of in
In deformation-rigidity theory it is often important to know whether certain bimodules are weakly contained in the coarse bimodule. Consider a bimodule $H$ over the group algebra $mathbb{C}[Gamma]$, with $Gamma$ a discrete group. The starting point o
We show that any Lipschitz projection-valued function p on a connected closed Riemannian manifold can be approximated uniformly by smooth projection-valued functions q with Lipschitz constant close to that of p. This answers a question of Rieffel.