ترغب بنشر مسار تعليمي؟ اضغط هنا

One-loop corrections, uncertainties and approximations in neutralino annihilations: Examples

76   0   0.0 ( 0 )
 نشر من قبل Guillaume Drieu La Rochelle Mr
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The extracted value of the relic density has reached the few per-cent level precision. One can therefore no longer content oneself with calculations of this observable where the annihilation processes are computed at tree-level, especially in supersymmetry where radiative corrections are usually large. Implementing full one-loop corrections to all annihilation processes that would be needed in a scan over parameters is a daunting task. On the other hand one may ask whether the bulk of the corrections are taken into account through effective couplings of the neutralino that improve the tree-level calculation and would be easy to implement. We address this issue by concentrating in this first study on the neutralino coupling to i) fermions and sfermions and ii) Z. After constructing the effective couplings we compare their efficiency compared to the full one-loop calculation and comment on the failures and success of the approach. As a bonus we point out that large non decoupling effects of heavy sfermions could in principle be measured in the annihilation process, a point of interest in view of the latest limit on the squark masses from the LHC. We also comment on the scheme dependencies of the one-loop corrected results.

قيم البحث

اقرأ أيضاً

140 - J. Harz , B. Herrmann , M. Klasen 2014
We discuss the ${cal O}(alpha_s)$ supersymmetric QCD corrections to neutralino-stop coannihilation into a top quark and a gluon in the Minimal Supersymmetric Standard Model (MSSM). This particular channel can be numerically important in wide ranges o f the MSSM parameter space with rather light stops. We discuss technical details such as the renormalization scheme and the phase-space slicing method with two cutoffs. We also comment on improvements with respect to earlier works on the given process. Further, we study for the first time the phenomenologically very interesting interplay of neutralino-stop coannihilation with neutralino-pair annihilation into quark pairs taking the full next-to-leading order SUSY-QCD corrections into account. We demonstrate that the numerical impact of these corrections on the total (co)annihilation cross section and finally on the theoretically predicted neutralino relic density is significant.
We show the impact of the electroweak, and in one instance the QCD, one-loop corrections on the relic density of dark matter in the MSSM which is provided by the lightest neutralino. We cover here some of the most important scenarii: annihilation int o fermions for a bino-like neutralino, annihilation involving gauge bosons in the case of a mixed neutralino, the neutralino-stau co-annihilation region and annihilation into a bottom quark pair. The corrections can be large and should be taken into account in view of the present and forthcoming increasing precision on the relic density measurements. Our calculations are made possible thanks to a newly developed automatic tool for the calculation at one-loop of any process in the MSSM. We have implemented a complete on-shell gauge invariant renormalisation scheme, with the possibility of switching to other schemes. In particular we will report on the impact of different renormalisation schemes for tan beta.
62 - Sun Hao , Han Liang , Ma Wen-Gan 2006
We study the process of the association production of chargino and neutralino including the NLO QCD and the complete one-loop electroweak corrections in the framework of the minimal supersymmetric standard model(MSSM) at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). In both the NLO QCD and one-loop electroweak calculations we apply the algorithm of the phase-space slicing(PSS) method. We find that the NLO QCD corrections generally increase the Born cross sections, while the electroweak relative corrections decrease the Born cross section in most of the chosen parameter space. The NLO QCD and electroweak relative corrections typically have the values of about 32% and -8% at the Tevatron, and about 42% and -6% at the LHC respectively. The results show that both the NLO QCD and the complete one-loop electroweak corrections to the processes $p bar p/pp to widetilde{chi}_1^{pm} widetilde{chi}_2^0+X$ are generally significant and should be taken into consideration in precision experimental analysis.
100 - R. Schofbeck , H. Eberl 2006
We have calculated the two-loop strong interaction corrections to the neutralino pole masses in the DRbar-scheme in the Minimal Supersymmetric Standard Model (MSSM). We have performed a detailed numerical analysis for a particular point in the parame ter space and found corrections of a few tenths of a percent. We agree with previously derived analytic formulae for two-loop corrections to fermion masses.
We present a semi-numerical algorithm to calculate one-loop virtual corrections to scattering amplitudes. The divergences of the loop amplitudes are regulated using dimensional regularization. We treat in detail the case of amplitudes with up to five external legs and massless internal lines, although the method is more generally applicable. Tensor integrals are reduced to generalized scalar integrals, which in turn are reduced to a set of known basis integrals using recursion relations. The reduction algorithm is modified near exceptional configurations to ensure numerical stability. To test the procedure we apply these techniques to one-loop corrections to the Higgs to four quark process for which analytic results have recently become available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا