ﻻ يوجد ملخص باللغة العربية
Efimov physics relates to 3-body systems with large 2-body scattering lengths a and small effective ranges r. For many systems in nature the assumption of a small effective range is not valid. The present report shows binding energies E of three identical bosons calculated with 2-body potentials that are fitted to scattering data and momentum cut-offs (L) by inverse scattering. Results agree with previous works in the case of r<<a. While energies diverge with momentum cut-off L for r=0, they converge for r>0 when L=~10/r. With 1/a=0 the converged energies are given by E(n) =C(n)/r*r with n labeling the energy-branch and calculated values C(0)=0.77, C(1)=.0028. This gives a ratio ~278 thus differing from the value ~515 in the Efimov case. Efimovs angular dependent function is calculated. Good agreement with previous works is obtained when r<< a. With the increased values of effective range the shallow states still appear Efimov-like. For deeper states the angular dependence differs but is independent of the effective range.
Physical systems characterized by a shallow two-body bound or virtual state are governed at large distances by a continuous-scale invariance, which is broken to a discrete one when three or more particles come into play. This symmetry induces a unive
The structure of few-fermion systems having $1/2$ spin-isospin symmetry is studied using potential models. The strength and range of the two-body potentials are fixed to describe low energy observables in the angular momentum $L=0$ state and spin $S=
We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-univers
In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels $S=0,1$, and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionle
Efimov physics is drastically affected by the change of spatial dimensions. Efimov states occur in a tridimensional (3D) environment, but disappear in two (2D) and one (1D) dimensions. In this paper, dedicated to the memory of Prof. Faddeev, we will